IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

Numerical Distribution Functions for Seasonal Unit Root Tests

  • Díaz-Emparanza Herrero, Ignacio

When working with time series data observed at intervals smaller than a year, it is often necessary to test for the presence of seasonal unit roots. One of the most widely used methods for testing seasonal unit roots is that of HEGY, which provides test statistics with non-standard distributions. This paper describes a generalisation of this method for any periodicity and uses a response surface regressions approach to calculate the critical values and P values of the HEGY statistics whatever the periodicity and sample size of the data. The algorithms are prepared with the Gretl open source econometrics package and some new tables of critical values for daily, hourly and half-hourly data are presented.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://hdl.handle.net/10810/5568
Download Restriction: no

Paper provided by Universidad del País Vasco - Departamento de Economía Aplicada III (Econometría y Estadística) in its series BILTOKI with number 2011-09.

as
in new window

Length:
Date of creation: Dec 2011
Date of revision:
Handle: RePEc:ehu:biltok:5568
Contact details of provider: Postal: Avda. Lehendakari, Aguirre, 83, 48015 Bilbao
Phone: + 34 94 601 3740
Fax: + 34 94 601 4935
Web page: http://www.ea3.ehu.esEmail:


More information through EDIRC

Order Information: Postal: Dpto. de Econometría y Estadística, Facultad de CC. Económicas y Empresariales, Universidad del País Vasco, Avda. Lehendakari Aguirre 83, 48015 Bilbao, Spain
Email:


References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Graham Elliott & Thomas J. Rothenberg & James H. Stock, 1992. "Efficient Tests for an Autoregressive Unit Root," NBER Technical Working Papers 0130, National Bureau of Economic Research, Inc.
  2. John Conlisk, 1974. "Optimal Response Surface Design in Monte Carlo Sampling Experiments," NBER Chapters, in: Annals of Economic and Social Measurement, Volume 3, number 3, pages 17-28 National Bureau of Economic Research, Inc.
  3. Osborn, Denise R, et al, 1988. "Seasonality and the Order of Integration for Consumption," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 50(4), pages 361-77, November.
  4. Serena Ng & Pierre Perron, 2001. "A Note on the Selection of Time Series Models," Boston College Working Papers in Economics 500, Boston College Department of Economics.
  5. Denis Kwiatkowski & Peter C.B. Phillips & Peter Schmidt, 1991. "Testing the Null Hypothesis of Stationarity Against the Alternative of a Unit Root: How Sure Are We That Economic Time Series Have a Unit Root?," Cowles Foundation Discussion Papers 979, Cowles Foundation for Research in Economics, Yale University.
  6. Hertel, Ida & Kohler, Michael, 2013. "Estimation of the optimal design of a nonlinear parametric regression problem via Monte Carlo experiments," Computational Statistics & Data Analysis, Elsevier, vol. 59(C), pages 1-12.
  7. Harvey, David I. & van Dijk, Dick, 2006. "Sample size, lag order and critical values of seasonal unit root tests," Computational Statistics & Data Analysis, Elsevier, vol. 50(10), pages 2734-2751, June.
  8. Giovanni Baiocchi, 2007. "Reproducible research in computational economics: guidelines, integrated approaches, and open source software," Computational Economics, Society for Computational Economics, vol. 30(1), pages 19-40, August.
  9. James G. MacKinnon, 1992. "Approximate Asymptotic Distribution Functions for Unit Roots and Cointegration Tests," Working Papers 861, Queen's University, Department of Economics.
  10. Hyllerberg, S. & Engle, R.F. & Granger, C.W.J. & Yoo, B.S., 1988. "Seasonal Integration And Cointegration," Papers 0-88-2, Pennsylvania State - Department of Economics.
  11. Dickey, David A & Fuller, Wayne A, 1981. "Likelihood Ratio Statistics for Autoregressive Time Series with a Unit Root," Econometrica, Econometric Society, vol. 49(4), pages 1057-72, June.
  12. George Marsaglia & Wai Wan Tsang, . "The Ziggurat Method for Generating Random Variables," Journal of Statistical Software, American Statistical Association, vol. 5(i08).
  13. Phillips, P C B, 1987. "Time Series Regression with a Unit Root," Econometrica, Econometric Society, vol. 55(2), pages 277-301, March.
  14. J. Joseph Beaulieu & Jeffrey A. Miron, 1992. "Seasonal Unit Roots in Aggregate U.S. Data," NBER Technical Working Papers 0126, National Bureau of Economic Research, Inc.
  15. MacKinnon, James G, 1996. "Numerical Distribution Functions for Unit Root and Cointegration Tests," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 11(6), pages 601-18, Nov.-Dec..
  16. Canova, Fabio & Hansen, Bruce E, 1995. "Are Seasonal Patterns Constant over Time? A Test for Seasonal Stability," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(3), pages 237-52, July.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:ehu:biltok:5568. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Alcira Macías)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.