IDEAS home Printed from https://ideas.repec.org/p/ehl/lserod/86314.html
   My bibliography  Save this paper

Identifying noise shocks: a VAR with data revisions

Author

Listed:
  • Masolo, Riccardo M.
  • Paccagnini, Alessia

Abstract

We propose a new VAR identification strategy to study the impact of noise shocks on aggregate activity. We do so exploiting the informational advantage the econometrician has, relative to the economic agent. The latter, who is uncertain about the underlying state of the economy, responds to the noisy early data releases. The former, with the benefit of hindsight, has access to data revisions as well, which can be used to identify noise shocks. By using a VAR we can avoid making very specific assumptions on the process driving data revisions. We rather remain agnostic about it but make our identification strategy robust to whether data revisions are driven by noise or news. Our analysis shows that a surprising report of output growth numbers delivers a persistent and hump-shaped response of real output and unemployment. The responses are qualitatively similar but an order of magnitude smaller than those to a demand shock. Finally, our counterfactual analysis supports the view that it would not be possible to identify noise shocks unless different vintages of data are used.

Suggested Citation

  • Masolo, Riccardo M. & Paccagnini, Alessia, 2015. "Identifying noise shocks: a VAR with data revisions," LSE Research Online Documents on Economics 86314, London School of Economics and Political Science, LSE Library.
  • Handle: RePEc:ehl:lserod:86314
    as

    Download full text from publisher

    File URL: http://eprints.lse.ac.uk/86314/
    File Function: Open access version.
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Seonghwan Oh & Michael Waldman, 1990. "The Macroeconomic Effects of False Announcements," The Quarterly Journal of Economics, Oxford University Press, vol. 105(4), pages 1017-1034.
    2. Blanchard, Olivier Jean & Quah, Danny, 1989. "The Dynamic Effects of Aggregate Demand and Supply Disturbances," American Economic Review, American Economic Association, vol. 79(4), pages 655-673, September.
    3. Carlo Altavilla & Matteo Ciccarelli, 2011. "Monetary Policy Analysis in Real-Time. Vintage Combination from a Real-Time Dataset," CESifo Working Paper Series 3372, CESifo Group Munich.
    4. Croushore, Dean & Stark, Tom, 2001. "A real-time data set for macroeconomists," Journal of Econometrics, Elsevier, vol. 105(1), pages 111-130, November.
    5. Olivier J. Blanchard & Jean-Paul L'Huillier & Guido Lorenzoni, 2013. "News, Noise, and Fluctuations: An Empirical Exploration," American Economic Review, American Economic Association, vol. 103(7), pages 3045-3070, December.
    6. David Altig & Lawrence Christiano & Martin Eichenbaum & Jesper Linde, 2011. "Firm-Specific Capital, Nominal Rigidities and the Business Cycle," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 14(2), pages 225-247, April.
    7. King, Robert G. & Rebelo, Sergio T., 1999. "Resuscitating real business cycles," Handbook of Macroeconomics,in: J. B. Taylor & M. Woodford (ed.), Handbook of Macroeconomics, edition 1, volume 1, chapter 14, pages 927-1007 Elsevier.
    8. Seonghwan Oh & Michael Waldman, 2005. "The Index of Leading Economic Indicators as a Source of Expectational Shocks," Eastern Economic Journal, Eastern Economic Association, vol. 31(1), pages 75-95, Winter.
    9. Clements, Michael P. & Beatriz Galvão, Ana, 2010. "First announcements and real economic activity," European Economic Review, Elsevier, vol. 54(6), pages 803-817, August.
    10. Stark, Tom & Croushore, Dean, 2002. "Forecasting with a real-time data set for macroeconomists," Journal of Macroeconomics, Elsevier, vol. 24(4), pages 507-531, December.
    11. Lawrence J. Christiano & Martin Eichenbaum & Charles L. Evans, 2005. "Nominal Rigidities and the Dynamic Effects of a Shock to Monetary Policy," Journal of Political Economy, University of Chicago Press, vol. 113(1), pages 1-45, February.
    12. Robert B. Barsky & Eric R. Sims, 2012. "Information, Animal Spirits, and the Meaning of Innovations in Consumer Confidence," American Economic Review, American Economic Association, vol. 102(4), pages 1343-1377, June.
    13. Orphanides, Athanasios, 2003. "Monetary policy evaluation with noisy information," Journal of Monetary Economics, Elsevier, vol. 50(3), pages 605-631, April.
    14. Leonardo Melosi, 2014. "Estimating Models with Dispersed Information," American Economic Journal: Macroeconomics, American Economic Association, vol. 6(1), pages 1-31, January.
    15. N. Gregory Mankiw & Matthew D. Shapiro, 1986. "News or Noise? An Analysis of GNP Revisions," NBER Working Papers 1939, National Bureau of Economic Research, Inc.
    16. David Altig & Lawrence Christiano & Martin Eichenbaum & Jesper Linde, 2011. "Firm-Specific Capital, Nominal Rigidities and the Business Cycle," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 14(2), pages 225-247, April.
    17. Guido Lorenzoni, 2009. "A Theory of Demand Shocks," American Economic Review, American Economic Association, vol. 99(5), pages 2050-2084, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kenza Benhima & Céline Poilly, 2017. "Do Misperceptions about Demand Matter? Theory and Evidence," Cahiers de Recherches Economiques du Département d'économie 17.08, Université de Lausanne, Faculté des HEC, Département d’économie.

    More about this item

    Keywords

    Noise Shocks; Data Revisions; VAR; Impulse-Response Functions;

    JEL classification:

    • C1 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General
    • D8 - Microeconomics - - Information, Knowledge, and Uncertainty
    • E30 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - General (includes Measurement and Data)

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ehl:lserod:86314. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (LSERO Manager). General contact details of provider: http://edirc.repec.org/data/lsepsuk.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.