IDEAS home Printed from https://ideas.repec.org/p/ehl/lserod/117510.html
   My bibliography  Save this paper

Local conditions for the decentralization of energy systems

Author

Listed:
  • Arvanitopoulos, Theodoros
  • Wilson, Charlie
  • Ferrini, Silvia

Abstract

Local energy systems (LES) are designed to decarbonize, balance, and coordinate supply, storage and demand resources. Which local conditions enable LES to flourish? Using a unique dataset of 146 LES projects in the UK from 2010 to 2020, we apply econometric methods to identify energy, institutional and socio-economic conditions significantly associated with LES, but not other local energy forms. We show distributed power generation, low-carbon infrastructure firm activity, local government strategy and active energy efficiency markets are enablers of LES involving multiple actors, sectors and skill sets. These conditions describe a clear policy agenda for stimulating and supporting emerging local energy markets.

Suggested Citation

  • Arvanitopoulos, Theodoros & Wilson, Charlie & Ferrini, Silvia, 2022. "Local conditions for the decentralization of energy systems," LSE Research Online Documents on Economics 117510, London School of Economics and Political Science, LSE Library.
  • Handle: RePEc:ehl:lserod:117510
    as

    Download full text from publisher

    File URL: http://eprints.lse.ac.uk/117510/
    File Function: Open access version.
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. David Gibbs & Gerd Lintz, 2016. "Editorial: Environmental Governance of Urban and Regional Development - Scales and Sectors, Conflict and Cooperation," Regional Studies, Taylor & Francis Journals, vol. 50(6), pages 925-928, June.
    2. Patrick Devine-Wright, 2019. "Community versus local energy in a context of climate emergency," Nature Energy, Nature, vol. 4(11), pages 894-896, November.
    3. Johan Schot & Laur Kanger & Geert Verbong, 2016. "The roles of users in shaping transitions to new energy systems," Nature Energy, Nature, vol. 1(5), pages 1-7, May.
    4. Webber, Phil & Gouldson, Andy & Kerr, Niall, 2015. "The impacts of household retrofit and domestic energy efficiency schemes: A large scale, ex post evaluation," Energy Policy, Elsevier, vol. 84(C), pages 35-43.
    5. Chicco, Gianfranco & Mancarella, Pierluigi, 2009. "Distributed multi-generation: A comprehensive view," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(3), pages 535-551, April.
    6. Eyre, Nick & Baruah, Pranab, 2015. "Uncertainties in future energy demand in UK residential heating," Energy Policy, Elsevier, vol. 87(C), pages 641-653.
    7. Alessandra Colombelli & Francesco Quatraro, 2019. "Green start-ups and local knowledge spillovers from clean and dirty technologies," Small Business Economics, Springer, vol. 52(4), pages 773-792, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Geetanjli Rani & Devender Kumar Saini, 2023. "Need of Integrated Regional Planning Approach for the Decentralisation and Optimisation of Renewable Energy Based Electric Vehicle Infrastructure: A Comprehensive Visualisation," Sustainability, MDPI, vol. 15(18), pages 1-27, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kalkbrenner, Bernhard J. & Yonezawa, Koichi & Roosen, Jutta, 2017. "Consumer preferences for electricity tariffs: Does proximity matter?," Energy Policy, Elsevier, vol. 107(C), pages 413-424.
    2. Peñasco, Cristina & Anadón, Laura Díaz, 2023. "Assessing the effectiveness of energy efficiency measures in the residential sector gas consumption through dynamic treatment effects: Evidence from England and Wales," Energy Economics, Elsevier, vol. 117(C).
    3. Soutar, Iain & Devine-Wright, Patrick & Rohse, Melanie & Walker, Chad & Gooding, Luke & Devine-Wright, Hannah & Kay, Imogen, 2022. "Constructing practices of engagement with users and communities: Comparing emergent state-led smart local energy systems," Energy Policy, Elsevier, vol. 171(C).
    4. Hossain, A.K. & Thorpe, R. & Vasudevan, P. & Sen, P.K. & Critoph, R.E. & Davies, P.A., 2013. "Omnigen: Providing electricity, food preparation, cold storage and pure water using a variety of local fuels," Renewable Energy, Elsevier, vol. 49(C), pages 197-202.
    5. Gabriele Loreti & Andrea Luigi Facci & Stefano Ubertini, 2021. "High-Efficiency Combined Heat and Power through a High-Temperature Polymer Electrolyte Membrane Fuel Cell and Gas Turbine Hybrid System," Sustainability, MDPI, vol. 13(22), pages 1-24, November.
    6. Hogan, Jessica L. & Warren, Charles R. & Simpson, Michael & McCauley, Darren, 2022. "What makes local energy projects acceptable? Probing the connection between ownership structures and community acceptance," Energy Policy, Elsevier, vol. 171(C).
    7. Sayegh, M.A. & Danielewicz, J. & Nannou, T. & Miniewicz, M. & Jadwiszczak, P. & Piekarska, K. & Jouhara, H., 2017. "Trends of European research and development in district heating technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 1183-1192.
    8. Funcke, Simon & Bauknecht, Dierk, 2016. "Typology of centralised and decentralised visions for electricity infrastructure," Utilities Policy, Elsevier, vol. 40(C), pages 67-74.
    9. Blarke, Morten B., 2012. "Towards an intermittency-friendly energy system: Comparing electric boilers and heat pumps in distributed cogeneration," Applied Energy, Elsevier, vol. 91(1), pages 349-365.
    10. Wang, Jiangjiang & Zhai, Zhiqiang (John) & Jing, Youyin & Zhang, Chunfa, 2010. "Optimization design of BCHP system to maximize to save energy and reduce environmental impact," Energy, Elsevier, vol. 35(8), pages 3388-3398.
    11. Thøgersen, John, 2017. "Housing-related lifestyle and energy saving: A multi-level approach," Energy Policy, Elsevier, vol. 102(C), pages 73-87.
    12. Artur Santoalha & Ron Boschma, 2021. "Diversifying in green technologies in European regions: does political support matter?," Regional Studies, Taylor & Francis Journals, vol. 55(2), pages 182-195, February.
    13. Aman, M.M. & Jasmon, G.B. & Bakar, A.H.A. & Mokhlis, H., 2014. "A new approach for optimum simultaneous multi-DG distributed generation Units placement and sizing based on maximization of system loadability using HPSO (hybrid particle swarm optimization) algorithm," Energy, Elsevier, vol. 66(C), pages 202-215.
    14. Gottschamer, L. & Zhang, Q., 2016. "Interactions of factors impacting implementation and sustainability of renewable energy sourced electricity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 164-174.
    15. Lehmann, Nico & Sloot, Daniel & Schüle, Christopher & Ardone, Armin & Fichtner, Wolf, 2023. "The motivational drivers behind consumer preferences for regional electricity – Results of a choice experiment in Southern Germany," Energy Economics, Elsevier, vol. 120(C).
    16. Verástegui, Felipe & Lorca, Álvaro & Negrete-Pincetic, Matias & Olivares, Daniel, 2020. "Firewood heat electrification impacts in the Chilean power system," Energy Policy, Elsevier, vol. 144(C).
    17. Vassilis M. Charitopoulos & Mathilde Fajardy & Chi Kong Chyong & David M. Reiner, 2022. "The case of 100% electrification of domestic heat in Great Britain," Working Papers EPRG2206, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
    18. Sovacool, Benjamin K. & Martiskainen, Mari, 2020. "Hot transformations: Governing rapid and deep household heating transitions in China, Denmark, Finland and the United Kingdom," Energy Policy, Elsevier, vol. 139(C).
    19. Marin, Giovanni & Vona, Francesco, 2023. "Finance and the reallocation of scientific, engineering and mathematical talent," Research Policy, Elsevier, vol. 52(5).
    20. Davide Castellani & Giovanni Marin & Sandro Montresor & Antonello Zanfei, 2020. "Foreign Direct Investments and Regional Specialization in Environmental Technologies," SEEDS Working Papers 0620, SEEDS, Sustainability Environmental Economics and Dynamics Studies, revised Apr 2020.

    More about this item

    Keywords

    decarbonization; decentralization; digital skills; landscape transition; local energy systems; spatial econometric modelling; EP/S031863/1; EP/S031898/ 1; 101003083;
    All these keywords.

    JEL classification:

    • C10 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - General
    • O33 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Technological Change: Choices and Consequences; Diffusion Processes
    • Q40 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - General
    • R11 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - General Regional Economics - - - Regional Economic Activity: Growth, Development, Environmental Issues, and Changes

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ehl:lserod:117510. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: LSERO Manager (email available below). General contact details of provider: https://edirc.repec.org/data/lsepsuk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.