IDEAS home Printed from https://ideas.repec.org/p/egu/wpaper/0511.html
   My bibliography  Save this paper

Informational Complexity and the Flow of Knowledge across social boundaries

Author

Listed:
  • Olav Sorenson
  • Jan W. Rivkin
  • Lee Fleming

Abstract

Scholars from a variety of backgrounds – economists, sociologists, strategists, and students of technology management – have sought a better understanding of why some knowledge disperses widely while other knowledge does not. In this quest, some researchers have focused on the characteristics of the knowledge itself (e.g., Polanyi, 1966; Reed and DeFillippi, 1990; Zander and Kogut, 1995) while others have emphasized the social networks that constrain and enable the flow of knowledge (e.g., Coleman et al., 1957; Davis and Greve, 1997). This chapter examines the interplay between these two factors. Specifically, we consider how the complexity of knowledge and the density of social relations jointly influence the movement of knowledge. Imagine a social network composed of patches of dense connections with sparse interstices between them. The dense patches might reflect firms, for instance, or geographic regions or technical communities. When does knowledge diffuse within these dense patches circumscribed by social boundaries but not beyond them? Synthesizing social network theory with a view of knowledge transfer as a search process, we argue that knowledge inequality across social boundaries should reach its peak when the underlying knowledge is of moderate complexity. To test this hypothesis, we analyze patent data and compare citation rates across three types of social boundaries: within versus outside the firm, geographically near to versus far from the inventor, and internal versus external to the technological class. In all three cases, the disparity in knowledge diffusion across these borders is greatest for knowledge of an intermediate level of complexity.

Suggested Citation

  • Olav Sorenson & Jan W. Rivkin & Lee Fleming, 2005. "Informational Complexity and the Flow of Knowledge across social boundaries," Papers in Evolutionary Economic Geography (PEEG) 0511, Utrecht University, Department of Human Geography and Spatial Planning, Group Economic Geography, revised Sep 2005.
  • Handle: RePEc:egu:wpaper:0511
    as

    Download full text from publisher

    File URL: http://econ.geo.uu.nl/peeg/peeg0511.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Fleming, Lee & Sorenson, Olav, 2001. "Technology as a complex adaptive system: evidence from patent data," Research Policy, Elsevier, vol. 30(7), pages 1019-1039, August.
    2. King, Gary & Zeng, Langche, 2001. "Logistic Regression in Rare Events Data," Political Analysis, Cambridge University Press, vol. 9(2), pages 137-163, January.
    3. Bronwyn H. Hall & Adam B. Jaffe & Manuel Trajtenberg, 2001. "The NBER Patent Citation Data File: Lessons, Insights and Methodological Tools," NBER Working Papers 8498, National Bureau of Economic Research, Inc.
    4. S.A. Lippman & R.P. Rumelt, 1982. "Uncertain Imitability: An Analysis of Interfirm Differences in Efficiency under Competition," Bell Journal of Economics, The RAND Corporation, vol. 13(2), pages 418-438, Autumn.
    5. Jan W. Rivkin, 2001. "Reproducing Knowledge: Replication Without Imitation at Moderate Complexity," Organization Science, INFORMS, vol. 12(3), pages 274-293, June.
    6. Lee Fleming & Olav Sorenson, 2004. "Science as a map in technological search," Strategic Management Journal, Wiley Blackwell, vol. 25(8‐9), pages 909-928, August.
    7. Koen Frenken & Alessandro Nuvolari, 2004. "The early development of the steam engine: an evolutionary interpretation using complexity theory," Industrial and Corporate Change, Oxford University Press and the Associazione ICC, vol. 13(2), pages 419-450, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Olav Sorenson & Jan W. Rivkin & Lee Fleming, 2010. "Complexity, Networks and Knowledge Flows," Chapters, in: Ron Boschma & Ron Martin (ed.), The Handbook of Evolutionary Economic Geography, chapter 15, Edward Elgar Publishing.
    2. Gatti, Corrado & Volpe, Loredana & Vagnani, Gianluca, 2015. "Interdependence among productive activities: Implications for exploration and exploitation," Journal of Business Research, Elsevier, vol. 68(3), pages 711-722.
    3. Yuchen Zhang & Wei Yang, 2022. "Breakthrough invention and problem complexity: Evidence from a quasi‐experiment," Strategic Management Journal, Wiley Blackwell, vol. 43(12), pages 2510-2544, December.
    4. Ganco, Martin, 2017. "NK model as a representation of innovative search," Research Policy, Elsevier, vol. 46(10), pages 1783-1800.
    5. Frenken, Koen, 2006. "A fitness landscape approach to technological complexity, modularity, and vertical disintegration," Structural Change and Economic Dynamics, Elsevier, vol. 17(3), pages 288-305, September.
    6. Yoichi Matsumoto, 2013. "Heterogeneous Combinations of Knowledge Elements: How the Knowledge Base Structure Impacts Knowledge-related Outcomes of a Firm," Discussion Paper Series DP2013-15, Research Institute for Economics & Business Administration, Kobe University.
    7. Dibiaggio, Ludovic & Nasiriyar, Maryam & Nesta, Lionel, 2014. "Substitutability and complementarity of technological knowledge and the inventive performance of semiconductor companies," Research Policy, Elsevier, vol. 43(9), pages 1582-1593.
    8. Anindya Ghosh & Xavier Martin & Johannes M. Pennings & Filippo Carlo Wezel, 2014. "Ambition Is Nothing Without Focus: Compensating for Negative Transfer of Experience in R&D," Organization Science, INFORMS, vol. 25(2), pages 572-590, April.
    9. Nicolaï Foss & Nils Stieglitz, 2012. "Modern Resource-based Theory(ies)," Chapters, in: Michael Dietrich & Jackie Krafft (ed.), Handbook on the Economics and Theory of the Firm, chapter 20, Edward Elgar Publishing.
    10. Barbieri, Nicolò & Marzucchi, Alberto & Rizzo, Ugo, 2020. "Knowledge sources and impacts on subsequent inventions: Do green technologies differ from non-green ones?," Research Policy, Elsevier, vol. 49(2).
    11. Ron Boschma & Pierre-Alexandre Balland & Dieter Franz Kogler, 2015. "Relatedness and technological change in cities: the rise and fall of technological knowledge in US metropolitan areas from 1981 to 2010," Industrial and Corporate Change, Oxford University Press and the Associazione ICC, vol. 24(1), pages 223-250.
    12. Gwendolyn K. Lee & Mishari A. Alnahedh, 2016. "Industries’ Potential for Interdependency and Profitability: A Panel of 135 Industries, 1988–1996," Strategy Science, INFORMS, vol. 1(4), pages 285-308, December.
    13. Benner, Mary & Waldfogel, Joel, 2008. "Close to you? Bias and precision in patent-based measures of technological proximity," Research Policy, Elsevier, vol. 37(9), pages 1556-1567, October.
    14. Melero, Eduardo & Palomeras, Neus, 2012. "The renaissance of the "renaissance man"? : specialists vs. generalists in teams of inventors," INDEM - Working Paper Business Economic Series id-12-01, Instituto para el Desarrollo Empresarial (INDEM).
    15. Shinjinee Chattopadhyay & Janet Bercovitz, 2020. "When one door closes, another door opens … for some: Evidence from the post‐TRIPS Indian pharmaceutical industry," Strategic Management Journal, Wiley Blackwell, vol. 41(6), pages 988-1022, June.
    16. Helmut M. Dietl & Markus Lang & Eric Lucas & Dirk Martignoni, 2012. "Learning Through Inaccurate Replication," Working Papers 312, University of Zurich, Department of Business Administration (IBW).
    17. Madeline K. Kneeland & Melissa A. Schilling & Barak S. Aharonson, 2020. "Exploring Uncharted Territory: Knowledge Search Processes in the Origination of Outlier Innovation," Organization Science, INFORMS, vol. 31(3), pages 535-557, May.
    18. Hazhir Rahmandad, 2019. "Interdependence, Complementarity, and Ruggedness of Performance Landscapes," Strategy Science, INFORMS, vol. 4(3), pages 234-249, September.
    19. McNamee, Robert C., 2013. "Can’t see the forest for the leaves: Similarity and distance measures for hierarchical taxonomies with a patent classification example," Research Policy, Elsevier, vol. 42(4), pages 855-873.
    20. Jie Wu & Kathryn Rudie Harrigan & Siah Hwee Ang & Zefu Wu, 2019. "The impact of imitation strategy and R&D resources on incremental and radical innovation: evidence from Chinese manufacturing firms," The Journal of Technology Transfer, Springer, vol. 44(1), pages 210-230, February.

    More about this item

    Keywords

    evolutionary economics; informational complexity; knowledge flow; social boundaries;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:egu:wpaper:0511. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/deguunl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.