IDEAS home Printed from https://ideas.repec.org/p/een/camaaa/2009-19.html
   My bibliography  Save this paper

Carbon offsets, reversal risk and US climate policy

Author

Listed:
  • Bryan K. Mignone
  • Matthew D. Hurteau
  • Yihsu Chen
  • Brent Sohngen

Abstract

Background: One controversial issue in the larger cap-and-trade debate is the proper use and certification of carbon offsets related to changes in land management. Advocates of an expanded offset supply claim that inclusion of such activities would expand the scope of the program and lower overall compliance costs, while opponents claim that it would weaken the environmental integrity of the program by crediting activities that yield either nonexistent or merely temporary carbon sequestration benefits. Our study starts from the premise that offsets are neither perfect mitigation instruments nor useless “hot air.” Results: We show that offsets provide a useful cost containment function, even when there is some threat of reversal, by injecting additional “when-flexibility” into the system. This allows market participants to shift their reduction requirements to periods of lower cost, thereby facilitating attainment of the least-cost time path without jeopardizing the cumulative environmental integrity of the system. By accounting for market conditions in conjunction with reversal risk, we develop a simple offset valuation methodology, taking into account the two most important factors that typically lead offsets to be overvalued or undervalued. Conclusions: The result of this paper is a quantitative “model rule” that could be included in future legislation or used as a basis for active management by a future “carbon fed” or other regulatory authority with jurisdiction over the US carbon market to actively manage allowance prices.

Suggested Citation

  • Bryan K. Mignone & Matthew D. Hurteau & Yihsu Chen & Brent Sohngen, 2009. "Carbon offsets, reversal risk and US climate policy," CAMA Working Papers 2009-19, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
  • Handle: RePEc:een:camaaa:2009-19
    as

    Download full text from publisher

    File URL: https://cama.crawford.anu.edu.au/sites/default/files/publication/cama_crawford_anu_edu_au/2021-06/19_mignone_hurteau_chen_sohngen_2009.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. W. A. Kurz & C. C. Dymond & G. Stinson & G. J. Rampley & E. T. Neilson & A. L. Carroll & T. Ebata & L. Safranyik, 2008. "Mountain pine beetle and forest carbon feedback to climate change," Nature, Nature, vol. 452(7190), pages 987-990, April.
    2. Kenneth M. Chomitz & Franck Lecocq, 2004. "Temporary sequestration credits: an instrument for carbon bears," Climate Policy, Taylor & Francis Journals, vol. 4(1), pages 65-74, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Knut Rosendahl & Jon Strand, 2015. "Emissions Trading with Offset Markets and Free Quota Allocations," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 61(2), pages 243-271, June.
    2. Jennifer Morris & Angelo Gurgel & Bryan K. Mignone & Haroon Kheshgi & Sergey Paltsev, 2024. "Mutual reinforcement of land-based carbon dioxide removal and international emissions trading in deep decarbonization scenarios," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    3. David Cooley & Christopher Galik & Thomas Holmes & Carolyn Kousky & Roger Cooke, 2012. "Managing dependencies in forest offset projects: toward a more complete evaluation of reversal risk," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 17(1), pages 17-24, January.
    4. Ronald Mitchell & C. Weiler, 2011. "Developing next-generation climate change scholars: the DISCCRS experience," Journal of Environmental Studies and Sciences, Springer;Association of Environmental Studies and Sciences, vol. 1(1), pages 54-62, March.
    5. Xin Zhao & Bryan K. Mignone & Marshall A. Wise & Haewon C. McJeon, 2024. "Trade-offs in land-based carbon removal measures under 1.5 °C and 2 °C futures," Nature Communications, Nature, vol. 15(1), pages 1-13, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Metsaranta, J.M. & Kurz, W.A., 2012. "Inter-annual variability of ecosystem production in boreal jack pine forests (1975–2004) estimated from tree-ring data using CBM-CFS3," Ecological Modelling, Elsevier, vol. 224(1), pages 111-123.
    2. Xie, Yalin & Lei, Xiangdong & Shi, Jingning, 2020. "Impacts of climate change on biological rotation of Larix olgensis plantations for timber production and carbon storage in northeast China using the 3-PGmix model," Ecological Modelling, Elsevier, vol. 435(C).
    3. Sohngen, Brent & Tian, Xiaohui, 2016. "Global climate change impacts on forests and markets," Forest Policy and Economics, Elsevier, vol. 72(C), pages 18-26.
    4. Coleman, Andrew, 2018. "Forest-based carbon sequestration, and the role of forward, futures, and carbon-lending markets: A comparative institutions approach," Journal of Forest Economics, Elsevier, vol. 33(C), pages 95-104.
    5. Zhiyuan Xiang & Meifang Zhao & U. S. Ogbodo, 2020. "Accumulation of Urban Insect Pests in China: 50 Years’ Observations on Camphor Tree ( Cinnamomum camphora )," Sustainability, MDPI, vol. 12(4), pages 1-15, February.
    6. Andrew Coleman, 2011. "Financial Contracts and the Management of Carbon Emissions in Small Scale Plantation Forests," Working Papers 11_04, Motu Economic and Public Policy Research.
    7. Bellassen, Valentin & Gitz, Vincent, 2008. "Reducing Emissions from Deforestation and Degradation in Cameroon -- Assessing costs and benefits," Ecological Economics, Elsevier, vol. 68(1-2), pages 336-344, December.
    8. Wan-Yu Liu & Qunwei Wang, 2016. "Optimal pricing of the Taiwan carbon trading market based on a demand–supply model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(1), pages 209-242, November.
    9. Chubaty, Alex M. & Roitberg, Bernard D. & Li, Chao, 2009. "A dynamic host selection model for mountain pine beetle, Dendroctonus ponderosae Hopkins," Ecological Modelling, Elsevier, vol. 220(9), pages 1241-1250.
    10. Patrick J. Comer & Jon C. Hak & Marion S. Reid & Stephanie L. Auer & Keith A. Schulz & Healy H. Hamilton & Regan L. Smyth & Matthew M. Kling, 2019. "Habitat Climate Change Vulnerability Index Applied to Major Vegetation Types of the Western Interior United States," Land, MDPI, vol. 8(7), pages 1-27, July.
    11. Keskitalo, E. Carina H. & Pettersson, Maria & Ambjörnsson, Emmeline Laszlo & Davis, Emily Jane, 2016. "Agenda-setting and framing of policy solutions for forest pests in Canada and Sweden: Avoiding beetle outbreaks?," Forest Policy and Economics, Elsevier, vol. 65(C), pages 59-68.
    12. Gulati, Sumeet & Vercammen, James, 2006. "Time inconsistent resource conservation contracts," Journal of Environmental Economics and Management, Elsevier, vol. 52(1), pages 454-468, July.
    13. Ayaovi Locoh & Évelyne Thiffault & Simon Barnabé, 2022. "Sustainability Impact Assessment of Forest Bioenergy Value Chains in Quebec (Canada)—A ToSIA Approach," Energies, MDPI, vol. 15(18), pages 1-21, September.
    14. Huang, Cho-ying & Asner, Gregory P. & Barger, Nichole N., 2012. "Modeling regional variation in net primary production of pinyon–juniper ecosystems," Ecological Modelling, Elsevier, vol. 227(C), pages 82-92.
    15. Thavasi, V. & Ramakrishna, S., 2009. "Asia energy mixes from socio-economic and environmental perspectives," Energy Policy, Elsevier, vol. 37(11), pages 4240-4250, November.
    16. Joan P. Casas-Ruiz & Pascal Bodmer & Kelly Ann Bona & David Butman & Mathilde Couturier & Erik J. S. Emilson & Kerri Finlay & Hélène Genet & Daniel Hayes & Jan Karlsson & David Paré & Changhui Peng & , 2023. "Integrating terrestrial and aquatic ecosystems to constrain estimates of land-atmosphere carbon exchange," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    17. Sumeet Gulati & James Vercammen, 2005. "The Optimal Length of an Agricultural Carbon Contract," Canadian Journal of Agricultural Economics/Revue canadienne d'agroeconomie, Canadian Agricultural Economics Society/Societe canadienne d'agroeconomie, vol. 53(4), pages 359-373, December.
    18. Ronny Rotbarth & Egbert H. Nes & Marten Scheffer & Jane Uhd Jepsen & Ole Petter Laksforsmo Vindstad & Chi Xu & Milena Holmgren, 2023. "Northern expansion is not compensating for southern declines in North American boreal forests," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    19. Dymond, Caren Christine & Giles-Hansen, Krysta & Asante, Patrick, 2020. "The forest mitigation-adaptation nexus: Economic benefits of novel planting regimes," Forest Policy and Economics, Elsevier, vol. 113(C).
    20. David Aadland & Charles Sims & David Finnoff, 2015. "Spatial Dynamics of Optimal Management in Bioeconomic Systems," Computational Economics, Springer;Society for Computational Economics, vol. 45(4), pages 545-577, April.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:een:camaaa:2009-19. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Cama Admin (email available below). General contact details of provider: https://edirc.repec.org/data/asanuau.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.