IDEAS home Printed from
   My bibliography  Save this article

Climate change in mountains: a review of elevation-dependent warming and its possible causes


  • Imtiaz Rangwala


  • James Miller


Available observations suggest that some mountain regions are experiencing seasonal warming rates that are greater than the global land average. There is also evidence from observational and modeling studies for an elevation-dependent climate response within some mountain regions. Our understanding of climate change in mountains, however, remains challenging owing to inadequacies in observations and models. In fact, it is still uncertain whether mountainous regions generally are warming at a different rate than the rest of the global land surface, or whether elevation-based sensitivities in warming rates are prevalent within mountains. We review studies of four high mountain regions – the Swiss Alps, the Colorado Rocky Mountains, the Tibetan Plateau/Himalayas, and the Tropical Andes – to examine questions related to the sensitivity of climate change to surface elevation. We explore processes that could lead to enhanced warming within mountain regions and possible mechanisms that can produce altitudinal gradients in warming rates on different time scales. A conclusive understanding of these responses will continue to elude us in the absence of a more comprehensive network of climate monitoring in mountains. Copyright Springer Science+Business Media B.V. 2012

Suggested Citation

  • Imtiaz Rangwala & James Miller, 2012. "Climate change in mountains: a review of elevation-dependent warming and its possible causes," Climatic Change, Springer, vol. 114(3), pages 527-547, October.
  • Handle: RePEc:spr:climat:v:114:y:2012:i:3:p:527-547
    DOI: 10.1007/s10584-012-0419-3

    Download full text from publisher

    File URL:
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Libin Yan & Zhengyu Liu & Guangshan Chen & J. E. Kutzbach & Xiaodong Liu, 2016. "Mechanisms of elevation-dependent warming over the Tibetan plateau in quadrupled CO2 experiments," Climatic Change, Springer, vol. 135(3), pages 509-519, April.
    2. Elias Zubler & Andreas Fischer & Mark Liniger & Mischa Croci-Maspoli & Simon Scherrer & Christof Appenzeller, 2014. "Localized climate change scenarios of mean temperature and precipitation over Switzerland," Climatic Change, Springer, vol. 125(2), pages 237-252, July.

    More about this item


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:114:y:2012:i:3:p:527-547. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sonal Shukla) or (Rebekah McClure). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.