IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v222y2011i13p2119-2129.html
   My bibliography  Save this article

Estimating the vulnerability of fifteen tree species under changing climate in Northwest North America

Author

Listed:
  • Coops, Nicholas C.
  • Waring, Richard H.

Abstract

In the Pacific northwestern (PNW) region of North America, climatic conditions have significantly warmed since a predominantly cool phase of the Pacific North American circulation patterns between 1950 and 1975. What are the implications of this shift in climate for the vulnerability of native tree species? To address this question, we combined mechanistic and statistical models to assess where a variety of native tree species might be more vulnerable within their recorded ranges and where they might potentially migrate. For long-lived species that are well adapted to compete, seasonal differences in photosynthesis and water use offer insights helpful in predicting their distributions. To evaluate the general response of conifers to climatic variation across the region, we previously applied a process-based model (3-PG), to simulate the growth and maximum leaf area index that Douglas-fir could attain within recognized forested areas. We then constructed automated decision tree models to define and map the ecological distributions of 15 tree species based on differences in how photosynthesis was constrained by drought, daytime temperatures, high evaporative demand, and the frequency of frost. For the baseline climate period (1950–1975), the decision tree models predicted presence and absence of each species at ∼23,000 observations with an average accuracy of 81%, with an average kappa statistic of 0.74. In this paper the same models were run annually for the period between 1976 and 2006 for each species, and the areas defined as remaining suitable or becoming vulnerable to disturbance were identified based on whether more or less than half of the years fell within the originally defined limits. Based on these criteria, 70% of the species recorded ranges remained suitable, with 30% deemed vulnerable. Results varied notably by species with western red cedar and western hemlock remaining highly adapted, with potential for range expansion in area of up to 50% relative to the baseline period. In contrast, ponderosa pine, lodgepole pine, grand, and noble fir were classified as vulnerable with potential net contractions in their ranges. The analysis was extended through the rest of the 21st century using climatic projections from the Canadian global circulation model with a high fossil fuel emission scenario (A2) and compared to other previously published species range predictions.

Suggested Citation

  • Coops, Nicholas C. & Waring, Richard H., 2011. "Estimating the vulnerability of fifteen tree species under changing climate in Northwest North America," Ecological Modelling, Elsevier, vol. 222(13), pages 2119-2129.
  • Handle: RePEc:eee:ecomod:v:222:y:2011:i:13:p:2119-2129
    DOI: 10.1016/j.ecolmodel.2011.03.033
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380011001700
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2011.03.033?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. W. A. Kurz & C. C. Dymond & G. Stinson & G. J. Rampley & E. T. Neilson & A. L. Carroll & T. Ebata & L. Safranyik, 2008. "Mountain pine beetle and forest carbon feedback to climate change," Nature, Nature, vol. 452(7190), pages 987-990, April.
    2. Nitschke, Craig R. & Innes, John L., 2008. "A tree and climate assessment tool for modelling ecosystem response to climate change," Ecological Modelling, Elsevier, vol. 210(3), pages 263-277.
    3. Coops, Nicholas C. & Waring, Richard H. & Schroeder, Todd A., 2009. "Combining a generic process-based productivity model and a statistical classification method to predict the presence and absence of tree species in the Pacific Northwest, U.S.A," Ecological Modelling, Elsevier, vol. 220(15), pages 1787-1796.
    4. -, 2008. "Women and Water: Climate Change in the Caribbean," Sede Subregional de la CEPAL para el Caribe (Estudios e Investigaciones) 38435, Naciones Unidas Comisión Económica para América Latina y el Caribe (CEPAL).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sheehan, T. & Bachelet, D. & Ferschweiler, K., 2015. "Projected major fire and vegetation changes in the Pacific Northwest of the conterminous United States under selected CMIP5 climate futures," Ecological Modelling, Elsevier, vol. 317(C), pages 16-29.
    2. Michael J. Case & Joshua J. Lawler, 2016. "Relative vulnerability to climate change of trees in western North America," Climatic Change, Springer, vol. 136(2), pages 367-379, May.
    3. Dymond, Caren Christine & Giles-Hansen, Krysta & Asante, Patrick, 2020. "The forest mitigation-adaptation nexus: Economic benefits of novel planting regimes," Forest Policy and Economics, Elsevier, vol. 113(C).
    4. David Turner & David Conklin & John Bolte, 2015. "Projected climate change impacts on forest land cover and land use over the Willamette River Basin, Oregon, USA," Climatic Change, Springer, vol. 133(2), pages 335-348, November.
    5. Gupta, Rajit & Sharma, Laxmi Kant, 2019. "The process-based forest growth model 3-PG for use in forest management: A review," Ecological Modelling, Elsevier, vol. 397(C), pages 55-73.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mathys, A.S. & Coops, N.C. & Simard, S.W. & Waring, R.H. & Aitken, S.N., 2018. "Diverging distribution of seedlings and mature trees reflects recent climate change in British Columbia," Ecological Modelling, Elsevier, vol. 384(C), pages 145-153.
    2. Erickson, Adam & Nitschke, Craig & Coops, Nicholas & Cumming, Steven & Stenhouse, Gordon, 2015. "Past-century decline in forest regeneration potential across a latitudinal and elevational gradient in Canada," Ecological Modelling, Elsevier, vol. 313(C), pages 94-102.
    3. Brian Petersen & Diana Stuart, 2014. "Explanations of a Changing Landscape: A Critical Examination of the British Columbia Bark Beetle Epidemic," Environment and Planning A, , vol. 46(3), pages 598-613, March.
    4. Metsaranta, J.M. & Kurz, W.A., 2012. "Inter-annual variability of ecosystem production in boreal jack pine forests (1975–2004) estimated from tree-ring data using CBM-CFS3," Ecological Modelling, Elsevier, vol. 224(1), pages 111-123.
    5. Fahse, Lorenz & Heurich, Marco, 2011. "Simulation and analysis of outbreaks of bark beetle infestations and their management at the stand level," Ecological Modelling, Elsevier, vol. 222(11), pages 1833-1846.
    6. Jolanta Kryspin-Watson & John Pollner & Sonja Nieuwejaar, 2008. "Climate Change Adaptation in Europe and Central Asia," World Bank Publications - Reports 25985, The World Bank Group.
    7. Xie, Yalin & Lei, Xiangdong & Shi, Jingning, 2020. "Impacts of climate change on biological rotation of Larix olgensis plantations for timber production and carbon storage in northeast China using the 3-PGmix model," Ecological Modelling, Elsevier, vol. 435(C).
    8. Sohngen, Brent & Tian, Xiaohui, 2016. "Global climate change impacts on forests and markets," Forest Policy and Economics, Elsevier, vol. 72(C), pages 18-26.
    9. Choden, Kunzang & Nitschke, Craig R. & Stewart, Stephen B. & Keenan, Rodney J., 2021. "The potential impacts of climate change on the distribution of key tree species and Cordyceps in Bhutan: Implications for ecological functions and rural livelihoods," Ecological Modelling, Elsevier, vol. 455(C).
    10. Goddard, K.A. & Craig, K.J. & Schoombie, J. & le Roux, P.C., 2022. "Investigation of ecologically relevant wind patterns on Marion Island using Computational Fluid Dynamics and measured data," Ecological Modelling, Elsevier, vol. 464(C).
    11. Imtiaz Rangwala & James Miller, 2012. "Climate change in mountains: a review of elevation-dependent warming and its possible causes," Climatic Change, Springer, vol. 114(3), pages 527-547, October.
    12. Vladislav Soukhovolsky & Anton Kovalev & Yulia Ivanova & Olga Tarasova, 2023. "Autoregression, First Order Phase Transition, and Stochastic Resonance: A Comparison of Three Models for Forest Insect Outbreaks," Mathematics, MDPI, vol. 11(19), pages 1-19, October.
    13. Monty, Arnaud & Lejeune, Philippe & Rondeux, Jacques, 2008. "Individual distance-independent girth increment model for Douglas-fir in southern Belgium," Ecological Modelling, Elsevier, vol. 212(3), pages 472-479.
    14. Anna Jönsson & Susanne Harding & Paal Krokene & Holger Lange & Åke Lindelöw & Bjørn Økland & Hans Ravn & Leif Schroeder, 2011. "Modelling the potential impact of global warming on Ips typographus voltinism and reproductive diapause," Climatic Change, Springer, vol. 109(3), pages 695-718, December.
    15. de Grange, Louis & Troncoso, Rodrigo & González, Felipe, 2012. "An empirical evaluation of the impact of three urban transportation policies on transit use," Transport Policy, Elsevier, vol. 22(C), pages 11-19.
    16. Mariësse A. E. Van Sluisveld & David E. H. J. Gernaat & Shuichi Ashina & Katherine V. Calvin & Amit Garg & Morna Isaac & Paul L. Lucas & Ioanna Mouratiadou & Sander A. C. Otto & Shilpa Rao & Priyadars, 2013. "A Multi-Model Analysis Of Post-2020 Mitigation Efforts Of Five Major Economies," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 4(04), pages 1-24.
    17. Basurto, Saul, 2016. "A Mexican Ricardian analysis: land rental prices or net revenues?," 90th Annual Conference, April 4-6, 2016, Warwick University, Coventry, UK 236362, Agricultural Economics Society.
    18. Zhiyuan Xiang & Meifang Zhao & U. S. Ogbodo, 2020. "Accumulation of Urban Insect Pests in China: 50 Years’ Observations on Camphor Tree ( Cinnamomum camphora )," Sustainability, MDPI, vol. 12(4), pages 1-15, February.
    19. Jean-Sébastien Landry & Navin Ramankutty, 2015. "Carbon Cycling, Climate Regulation, and Disturbances in Canadian Forests: Scientific Principles for Management," Land, MDPI, vol. 4(1), pages 1-36, January.
    20. Mayer-Foulkes David A, 2010. "Long-Term Fundamentals of the 2008 Economic Crisis," Global Economy Journal, De Gruyter, vol. 9(4), pages 1-25, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:222:y:2011:i:13:p:2119-2129. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.