IDEAS home Printed from https://ideas.repec.org/p/edn/sirdps/81.html
   My bibliography  Save this paper

What Belongs Where? Variable Selection for Zero-Inflated Count Models with an Application to the Demand for Health Care

Author

Listed:
  • Jochmann, Markus

Abstract

This paper develops stochastic search variable selection (SSVS) for zero-inflated count models which are commonly used in health economics. This allows for either model averaging or model selection in situations with many potential regressors. The proposed techniques are applied to a data set from Germany considering the demand for health care. A package for the free statistical software environment R is provided.

Suggested Citation

  • Jochmann, Markus, 2009. "What Belongs Where? Variable Selection for Zero-Inflated Count Models with an Application to the Demand for Health Care," SIRE Discussion Papers 2009-54, Scottish Institute for Research in Economics (SIRE).
  • Handle: RePEc:edn:sirdps:81
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10943/81
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Markus Jochmann & Roberto León-González, 2004. "Estimating the demand for health care with panel data: a semiparametric Bayesian approach," Health Economics, John Wiley & Sons, Ltd., vol. 13(10), pages 1003-1014.
    2. Deb, Partha & Munkin, Murat K. & Trivedi, Pravin K., 2006. "Private Insurance, Selection, and Health Care Use: A Bayesian Analysis of a Roy-Type Model," Journal of Business & Economic Statistics, American Statistical Association, vol. 24, pages 403-415, October.
    3. Andreas Million & Regina T. Riphahn & Achim Wambach, 2003. "Incentive effects in the demand for health care: a bivariate panel count data estimation," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 18(4), pages 387-405.
    4. Nazmi Sari, 2009. "Physical inactivity and its impact on healthcare utilization," Health Economics, John Wiley & Sons, Ltd., vol. 18(8), pages 885-901.
    5. Geweke, John & Keane, Michael, 2007. "Smoothly mixing regressions," Journal of Econometrics, Elsevier, vol. 138(1), pages 252-290, May.
    6. Mullahy, John, 1986. "Specification and testing of some modified count data models," Journal of Econometrics, Elsevier, vol. 33(3), pages 341-365, December.
    7. Gert G. Wagner & Joachim R. Frick & Jürgen Schupp, 2007. "The German Socio-Economic Panel Study (SOEP) – Scope, Evolution and Enhancements," Schmollers Jahrbuch : Journal of Applied Social Science Studies / Zeitschrift für Wirtschafts- und Sozialwissenschaften, Duncker & Humblot, Berlin, vol. 127(1), pages 139-169.
    8. D. Böhning & E. Dietz & P. Schlattmann & L. Mendonça & U. Kirchner, 1999. "The zero-inflated Poisson model and the decayed, missing and filled teeth index in dental epidemiology," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 162(2), pages 195-209.
    9. Street, Andrew & Jones, Andrew & Furuta, Aya, 1999. "Cost-sharing and pharmaceutical utilisation and expenditure in Russia," Journal of Health Economics, Elsevier, vol. 18(4), pages 459-472, August.
    10. Pizer, Steven D. & Prentice, Julia C., 2011. "Time is money: Outpatient waiting times and health insurance choices of elderly veterans in the United States," Journal of Health Economics, Elsevier, vol. 30(4), pages 626-636, July.
    11. Eddelbuettel, Dirk & Francois, Romain, 2011. "Rcpp: Seamless R and C++ Integration," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 40(i08).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Antonio J. Sáez-Castillo & Antonio Conde-Sánchez, 2017. "Detecting over- and under-dispersion in zero inflated data with the hyper-Poisson regression model," Statistical Papers, Springer, vol. 58(1), pages 19-33, March.

    More about this item

    Keywords

    Bayesian; model selection; model averaging; count data; zero-in ation; demand for health care;

    JEL classification:

    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
    • C25 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Discrete Regression and Qualitative Choice Models; Discrete Regressors; Proportions; Probabilities
    • I11 - Health, Education, and Welfare - - Health - - - Analysis of Health Care Markets

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:edn:sirdps:81. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Research Office). General contact details of provider: http://edirc.repec.org/data/sireeuk.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.