IDEAS home Printed from https://ideas.repec.org/p/rim/rimwps/45_09.html
   My bibliography  Save this paper

What Belongs Where? Variable Selection for Zero-Inflated Count Models with an Application to the Demand for Health Care

Author

Listed:
  • Markus Jochmann

    (Department of Economics, University of Strathclyde)

Abstract

This paper develops stochastic search variable selection (SSVS) for zero-inflated count models which are commonly used in health economics. This allows for either model averaging or model selection in situations with many potential regressors. The proposed techniques are applied to a data set from Germany considering the demand for health care. A package for the free statistical software environment R is provided.

Suggested Citation

  • Markus Jochmann, 2009. "What Belongs Where? Variable Selection for Zero-Inflated Count Models with an Application to the Demand for Health Care," Working Paper series 45_09, Rimini Centre for Economic Analysis.
  • Handle: RePEc:rim:rimwps:45_09
    as

    Download full text from publisher

    File URL: http://www.rcea.org/RePEc/pdf/wp45_09.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Deb, Partha & Munkin, Murat K. & Trivedi, Pravin K., 2006. "Private Insurance, Selection, and Health Care Use: A Bayesian Analysis of a Roy-Type Model," Journal of Business & Economic Statistics, American Statistical Association, vol. 24, pages 403-415, October.
    2. Geweke, John & Keane, Michael, 2007. "Smoothly mixing regressions," Journal of Econometrics, Elsevier, vol. 138(1), pages 252-290, May.
    3. Mullahy, John, 1986. "Specification and testing of some modified count data models," Journal of Econometrics, Elsevier, vol. 33(3), pages 341-365, December.
    4. Pizer, Steven D. & Prentice, Julia C., 2011. "Time is money: Outpatient waiting times and health insurance choices of elderly veterans in the United States," Journal of Health Economics, Elsevier, vol. 30(4), pages 626-636, July.
    5. Eddelbuettel, Dirk & Francois, Romain, 2011. "Rcpp: Seamless R and C++ Integration," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 40(i08).
    6. Markus Jochmann & Roberto León‐González, 2004. "Estimating the demand for health care with panel data: a semiparametric Bayesian approach," Health Economics, John Wiley & Sons, Ltd., vol. 13(10), pages 1003-1014, October.
    7. Nazmi Sari, 2009. "Physical inactivity and its impact on healthcare utilization," Health Economics, John Wiley & Sons, Ltd., vol. 18(8), pages 885-901, August.
    8. Gert G. Wagner & Joachim R. Frick & Jürgen Schupp, 2007. "The German Socio-Economic Panel Study (SOEP) – Scope, Evolution and Enhancements," Schmollers Jahrbuch : Journal of Applied Social Science Studies / Zeitschrift für Wirtschafts- und Sozialwissenschaften, Duncker & Humblot, Berlin, vol. 127(1), pages 139-169.
    9. W. R. Gilks & P. Wild, 1992. "Adaptive Rejection Sampling for Gibbs Sampling," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 41(2), pages 337-348, June.
    10. Andreas Million & Regina T. Riphahn & Achim Wambach, 2003. "Incentive effects in the demand for health care: a bivariate panel count data estimation," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 18(4), pages 387-405.
    11. D. Böhning & E. Dietz & P. Schlattmann & L. Mendonça & U. Kirchner, 1999. "The zero‐inflated Poisson model and the decayed, missing and filled teeth index in dental epidemiology," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 162(2), pages 195-209.
    12. Street, Andrew & Jones, Andrew & Furuta, Aya, 1999. "Cost-sharing and pharmaceutical utilisation and expenditure in Russia," Journal of Health Economics, Elsevier, vol. 18(4), pages 459-472, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. John Haslett & Andrew C. Parnell & John Hinde & Rafael de Andrade Moral, 2022. "Modelling Excess Zeros in Count Data: A New Perspective on Modelling Approaches," International Statistical Review, International Statistical Institute, vol. 90(2), pages 216-236, August.
    2. Antonio J. Sáez-Castillo & Antonio Conde-Sánchez, 2017. "Detecting over- and under-dispersion in zero inflated data with the hyper-Poisson regression model," Statistical Papers, Springer, vol. 58(1), pages 19-33, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gregori Baetschmann & Rainer Winkelmann, 2014. "A dynamic hurdle model for zero-inflated count data: with an application to health care utilization," ECON - Working Papers 151, Department of Economics - University of Zurich.
    2. Kevin E. Staub & Rainer Winkelmann, 2013. "Consistent Estimation Of Zero‐Inflated Count Models," Health Economics, John Wiley & Sons, Ltd., vol. 22(6), pages 673-686, June.
    3. Hendrik Schmitz, 2012. "More health care utilization with more insurance coverage? Evidence from a latent class model with German data," Applied Economics, Taylor & Francis Journals, vol. 44(34), pages 4455-4468, December.
    4. K. F. Lam & Hongqi Xue & Yin Bun Cheung, 2006. "Semiparametric Analysis of Zero-Inflated Count Data," Biometrics, The International Biometric Society, vol. 62(4), pages 996-1003, December.
    5. Schmitz, Hendrik, 2013. "Practice budgets and the patient mix of physicians – The effect of a remuneration system reform on health care utilisation," Journal of Health Economics, Elsevier, vol. 32(6), pages 1240-1249.
    6. Hendrik Schmitz, 2008. "Do Optional Deductibles Reduce the Number of Doctor Visits?: Empirical Evidence with German Data," SOEPpapers on Multidisciplinary Panel Data Research 141, DIW Berlin, The German Socio-Economic Panel (SOEP).
    7. Gregori Baetschmann & Rainer Winkelmann, 2012. "Modelling zero-inflated count data when exposure varies: with an application to sick leave," ECON - Working Papers 061, Department of Economics - University of Zurich.
    8. Greene, William, 2007. "Functional Form and Heterogeneity in Models for Count Data," Foundations and Trends(R) in Econometrics, now publishers, vol. 1(2), pages 113-218, August.
    9. Schmitz, Hendrik, 2008. "Do Optional Deductibles Reduce the Number of Doctor Visits? – Empirical Evidence with German Data," Ruhr Economic Papers 76, RWI - Leibniz-Institut für Wirtschaftsforschung, Ruhr-University Bochum, TU Dortmund University, University of Duisburg-Essen.
    10. Johannes S. Kunz & Kevin E. Staub & Rainer Winkelmann, 2021. "Predicting individual effects in fixed effects panel probit models," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 184(3), pages 1109-1145, July.
    11. Keane, Michael & Stavrunova, Olena, 2016. "Adverse selection, moral hazard and the demand for Medigap insurance," Journal of Econometrics, Elsevier, vol. 190(1), pages 62-78.
    12. Massimiliano Bratti & Alfonso Miranda, 2010. "Endogenous Treatment Effects for Count Data Models with Sample Selection or Endogenous Participation," DoQSS Working Papers 10-05, Quantitative Social Science - UCL Social Research Institute, University College London, revised 10 Dec 2010.
    13. Kunz, J.S.; & Staub, K.E.; & Winkelmann, R.;, 2018. "Predicting fixed effects in panel probit models," Health, Econometrics and Data Group (HEDG) Working Papers 18/23, HEDG, c/o Department of Economics, University of York.
    14. Tousifur Rahman & Partha Jyoti Hazarika & M. Masoom Ali & Manash Pratim Barman, 2022. "Three-Inflated Poisson Distribution and its Application in Suicide Cases of India During Covid-19 Pandemic," Annals of Data Science, Springer, vol. 9(5), pages 1103-1127, October.
    15. Massimiliano Bratti & Alfonso Miranda, 2011. "Endogenous treatment effects for count data models with endogenous participation or sample selection," Health Economics, John Wiley & Sons, Ltd., vol. 20(9), pages 1090-1109, September.
    16. Teresa Bago d'Uva, 2006. "Latent class models for utilisation of health care," Health Economics, John Wiley & Sons, Ltd., vol. 15(4), pages 329-343, April.
    17. Johannes S. Kunz & Rainer Winkelmann, 2017. "An Econometric Model of Healthcare Demand With Nonlinear Pricing," Health Economics, John Wiley & Sons, Ltd., vol. 26(6), pages 691-702, June.
    18. Murat K. Munkin, 2022. "Count Roy model with finite mixtures," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(6), pages 1160-1181, September.
    19. L. Elbakidze & Y. H. Jin, 2015. "Are Economic Development and Education Improvement Associated with Participation in Transnational Terrorism?," Risk Analysis, John Wiley & Sons, vol. 35(8), pages 1520-1535, August.
    20. William H. Greene & David A. Hensher, 2008. "Modeling Ordered Choices: A Primer and Recent Developments," Working Papers 08-26, New York University, Leonard N. Stern School of Business, Department of Economics.

    More about this item

    Keywords

    Bayesian; model selection; model averaging; count data; zero-inflation; demand for health care;
    All these keywords.

    JEL classification:

    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
    • C25 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Discrete Regression and Qualitative Choice Models; Discrete Regressors; Proportions; Probabilities
    • I11 - Health, Education, and Welfare - - Health - - - Analysis of Health Care Markets

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:rim:rimwps:45_09. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Marco Savioli (email available below). General contact details of provider: https://edirc.repec.org/data/rcfeait.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.