IDEAS home Printed from
   My bibliography  Save this paper

Pricing with markups in industries with increasing marginal costs


  • José R. Correa
  • Nicolás Figueroa
  • Nicolás E. Stier-Moses



We study a game that models a market in which heterogeneous producers of perfect substitutes make pricing decisions in a first stage, followed by consumers that select a producer that sells at lowest price. As opposed to Cournot or Bertrand competition, producers submit a price function to the market, which maps their production level to a price. Solutions of this type of models are normally referred to as supply function equilibria, and the most common application is in electricity markets. In our model, producers face increasing marginal production costs and, in addition, cost functions are proportional to each other, and their magnitude depend on the efficiency of each particular producer. In this context, we prove necessary and sufficient conditions for the existence of equilibria in which producers use supply functions that replicate their cost structure. We then specialize the model to monomial cost functions with exponent equal to q > 0, which allows us to reinterpret the simple supply functions as a markup charged on top of the production cost. We prove that an equilibrium for the markups exists if and only if the number of producers in the market is strictly larger than 1 + q, and if an equilibrium exists, it is unique. The main result for monomial cost functions is to establish that the equilibrium is nearly efficient when the market is competitive. Here, an efficient assignment is one that minimizes the total production cost, ignoring payments because they are transfers within the system. The result holds because when there is enough competition, markups are bounded, thus preventing prices to be significantly distorted from costs. Finally, we focus on the case when unit costs are linear functions on the production quantities. This simplification allows us to refine the previous bound by establishing an almost tight bound on the worst-case inefficiency of an equilibrium. This bound is a subproduct of an algorithm that we design to find such equilibrium. The bound states that when there are two equally-efficient producers and possibly other less efficient ones, the production cost under an equilibrium is at most 50 percent worse than the optimal one, and the worst-case gap between the two assignments decreases rapidly as competition increases. For instance, for three similarly-efficient producers plus perhaps other less efficient ones, the inefficiency is below 6.2 percent. JEL Classification. C61, C72, D43, L11, Q41.

Suggested Citation

  • José R. Correa & Nicolás Figueroa & Nicolás E. Stier-Moses, 2008. "Pricing with markups in industries with increasing marginal costs," Documentos de Trabajo 256, Centro de Economía Aplicada, Universidad de Chile.
  • Handle: RePEc:edj:ceauch:256

    Download full text from publisher

    File URL:
    Download Restriction: no

    References listed on IDEAS

    1. Acemoglu, Daron & Bimpikis, Kostas & Ozdaglar, Asuman, 2009. "Price and capacity competition," Games and Economic Behavior, Elsevier, vol. 66(1), pages 1-26, May.
    2. Roughgarden, Tim & Tardos, Eva, 2004. "Bounding the inefficiency of equilibria in nonatomic congestion games," Games and Economic Behavior, Elsevier, vol. 47(2), pages 389-403, May.
    3. Turnbull, Stephen J., 1983. "Choosing duopoly solutions by consistent conjectures and by uncertainty," Economics Letters, Elsevier, vol. 13(2-3), pages 253-258.
    4. Engel Eduardo M & Fischer Ronald & Galetovic Alexander, 2004. "Toll Competition Among Congested Roads," The B.E. Journal of Economic Analysis & Policy, De Gruyter, vol. 4(1), pages 1-21, March.
    5. Ugur Akgün, 2004. "Mergers With Supply Functions," Journal of Industrial Economics, Wiley Blackwell, vol. 52(4), pages 535-546, December.
    6. Klemperer, Paul D & Meyer, Margaret A, 1989. "Supply Function Equilibria in Oligopoly under Uncertainty," Econometrica, Econometric Society, vol. 57(6), pages 1243-1277, November.
    7. Correa, Jose R. & Schulz, Andreas S. & Stier Moses, Nicolas E., 2003. "Selfish Routing in Capacitated Networks," Working papers 4319-03, Massachusetts Institute of Technology (MIT), Sloan School of Management.
    8. Correa, José R. & Schulz, Andreas S. & Stier-Moses, Nicolás E., 2008. "A geometric approach to the price of anarchy in nonatomic congestion games," Games and Economic Behavior, Elsevier, vol. 64(2), pages 457-469, November.
    9. Ross Baldick & Ryan Grant & Edward Kahn, 2004. "Theory and Application of Linear Supply Function Equilibrium in Electricity Markets," Journal of Regulatory Economics, Springer, vol. 25(2), pages 143-167, March.
    10. Wichiensin, Muanmas & Bell, Michael G.H. & Yang, Hai, 2007. "Impact of congestion charging on the transit market: An inter-modal equilibrium model," Transportation Research Part A: Policy and Practice, Elsevier, vol. 41(7), pages 703-713, August.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Patrick MaillÉ & Bruno Tuffin, 2011. "Competition among providers in loss networks," Post-Print hal-00724665, HAL.

    More about this item

    JEL classification:

    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • C72 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Noncooperative Games
    • D43 - Microeconomics - - Market Structure, Pricing, and Design - - - Oligopoly and Other Forms of Market Imperfection
    • L11 - Industrial Organization - - Market Structure, Firm Strategy, and Market Performance - - - Production, Pricing, and Market Structure; Size Distribution of Firms
    • Q41 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Demand and Supply; Prices


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:edj:ceauch:256. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.