IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

Selfish Routing in Capacitated Networks

  • Correa, Jose R.
  • Schulz, Andreas S.
  • Stier Moses, Nicolas E.

According to Wardrop's first principle, agents in a congested network choose their routes selfishly, a behavior that is captured by the Nash equilibrium of the underlying noncooperative game. A Nash equilibrium does not optimize any global criterion per se, and so there is no apparent reason why it should be close to a solution of minimal total travel time, i.e. the system optimum. In this paper, we offer extensions of recent positive results on the efficiency of Nash equilibria in traffic networks. In contrast to prior work, we present results for networks with capacities and for latency functions that are nonconvex, nondifferentiable and even discontinuous. The inclusion of upper bounds on arc flows has early been recognized as an important means to provide a more accurate description of traffic flows. In this more general model, multiple Nash equilibria may exist and an arbitrary equilibrium does not need to be nearly efficient. Nonetheless, our main result shows that the best equilibrium is as efficient as in the model without capacities. Moreover, this holds true for broader classes of travel cost functions than considered hithert

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://hdl.handle.net/1721.1/3533
Download Restriction: no

Paper provided by Massachusetts Institute of Technology (MIT), Sloan School of Management in its series Working papers with number 4319-03.

as
in new window

Length:
Date of creation: 01 Aug 2003
Date of revision:
Handle: RePEc:mit:sloanp:3533
Contact details of provider: Postal: MASSACHUSETTS INSTITUTE OF TECHNOLOGY (MIT), SLOAN SCHOOL OF MANAGEMENT, 50 MEMORIAL DRIVE CAMBRIDGE MASSACHUSETTS 02142 USA
Phone: 617-253-2659
Web page: http://mitsloan.mit.edu/

More information through EDIRC

Order Information: Postal: MASSACHUSETTS INSTITUTE OF TECHNOLOGY (MIT), SLOAN SCHOOL OF MANAGEMENT, 50 MEMORIAL DRIVE CAMBRIDGE MASSACHUSETTS 02142 USA

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. A. de Palma & Y. Nesterov, 1997. "Optimization formulations and static equilibrium in congested transportation networks," THEMA Working Papers 97-17, THEMA (THéorie Economique, Modélisation et Applications), Université de Cergy-Pontoise.
  2. Larsson, Torbjörn & Patriksson, Michael, 1995. "An augmented lagrangean dual algorithm for link capacity side constrained traffic assignment problems," Transportation Research Part B: Methodological, Elsevier, vol. 29(6), pages 433-455, December.
  3. Yang, Hai & Yagar, Sam, 1994. "Traffic assignment and traffic control in general freeway-arterial corridor systems," Transportation Research Part B: Methodological, Elsevier, vol. 28(6), pages 463-486, December.
  4. Gartner, Nathan H. & Gershwin, Stanley B. & Little, John D. C. & Ross, Paul, 1980. "Pilot study of computer-based urban traffic management," Transportation Research Part B: Methodological, Elsevier, vol. 14(1-2), pages 203-217.
  5. Larsson, Torbjörn & Patriksson, Michael, 1999. "Side constrained traffic equilibrium models-- analysis, computation and applications," Transportation Research Part B: Methodological, Elsevier, vol. 33(4), pages 233-264, May.
  6. Hearn, Donald W. & Ribera, Jaime, 1981. "Convergence of the Frank-Wolfe method for certain bounded variable traffic assignment problems," Transportation Research Part B: Methodological, Elsevier, vol. 15(6), pages 437-442, December.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:mit:sloanp:3533. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Christian Zimmermann)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.