IDEAS home Printed from https://ideas.repec.org/p/ecr/col022/47868.html
   My bibliography  Save this paper

Reducing emissions from the energy sector for a more resilient and low-carbon post-pandemic recovery in Latin America and the Caribbean

Author

Listed:
  • Grottera, Carolina

Abstract

Economic crises are not new, but the way countries respond to and seek to build back from their effects is an ever-evolving process. In the present context, the strategies adopted by Latin American and Caribbean countries to recover from the dramatic impacts of the coronavirus disease (COVID-19) pandemic are marked by an urgent need to also address the climate crisis. This publication examines the synergies and linkages between post-COVID-19 crisis recovery approaches stemming from a sustainable energy transition in Latin America and the Caribbean. The study aims to identify recovery strategies for key sectors and technologies based on policies, institutions, regulations and investments that can represent a big push for more sustainable ways to produce and consume energy and the decarbonization of the economy.

Suggested Citation

  • Grottera, Carolina, 2022. "Reducing emissions from the energy sector for a more resilient and low-carbon post-pandemic recovery in Latin America and the Caribbean," Documentos de Proyectos 47868, Naciones Unidas Comisión Económica para América Latina y el Caribe (CEPAL).
  • Handle: RePEc:ecr:col022:47868
    as

    Download full text from publisher

    File URL: http://repositorio.cepal.org/handle/11362/47868
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. World Bank, 2017. "Energy Markets in Latin America," World Bank Publications - Reports 30211, The World Bank Group.
    2. Rodriguez Pardina,Martin Augusto & Schiro,Julieta, 2018. "Taking stock of economic regulation of power utilities in the developing world : a literature review," Policy Research Working Paper Series 8461, The World Bank.
    3. Unruh, Gregory C., 2000. "Understanding carbon lock-in," Energy Policy, Elsevier, vol. 28(12), pages 817-830, October.
    4. Mastropietro, Paolo & Barroso, Luiz A. & Batlle, Carlos, 2015. "Power transmission regulation in a liberalised context: An analysis of innovative solutions in South American markets," Utilities Policy, Elsevier, vol. 33(C), pages 1-9.
    5. Vogt-Schilb, Adrien & Feng, Kuishuang, 2019. "The Labor Impact of Coal Phase Down Scenarios in Chile," EconStor Preprints 216904, ZBW - Leibniz Information Centre for Economics.
    6. Fragkos, Panagiotis & Paroussos, Leonidas, 2018. "Employment creation in EU related to renewables expansion," Applied Energy, Elsevier, vol. 230(C), pages 935-945.
    7. Azadeh Maroufmashat & Michael Fowler, 2017. "Transition of Future Energy System Infrastructure; through Power-to-Gas Pathways," Energies, MDPI, vol. 10(8), pages 1-22, July.
    8. Darghouth, Naïm R. & Barbose, Galen & Wiser, Ryan, 2011. "The impact of rate design and net metering on the bill savings from distributed PV for residential customers in California," Energy Policy, Elsevier, vol. 39(9), pages 5243-5253, September.
    9. Saget, Catherine & Vogt-Schilb, Adrien & Luu, Trang, 2020. "Jobs in a Net-Zero Emissions Future in Latin America and the Caribbean," EconStor Books, ZBW - Leibniz Information Centre for Economics, number 222572, July.
    10. Messina, Diego & Contreras Lisperguer, Rubén, 2019. "Sostenibilidad energética en América Latina y el Caribe: reporte de los indicadores del Objetivo de Desarrollo Sostenible 7," Documentos de Proyectos 44686, Naciones Unidas Comisión Económica para América Latina y el Caribe (CEPAL).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Campodónico, Humberto & Carrera, César, 2022. "Energy transition and renewable energies: Challenges for Peru," Energy Policy, Elsevier, vol. 171(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Damien Bazin & Nouri Chtourou & Amna Omri, 2019. "Risk management and policy implications for concentrating solar power technology investments in Tunisia," Post-Print hal-02061788, HAL.
    2. Ossenbrink, Jan & Finnsson, Sveinbjoern & Bening, Catharina R. & Hoffmann, Volker H., 2019. "Delineating policy mixes: Contrasting top-down and bottom-up approaches to the case of energy-storage policy in California," Research Policy, Elsevier, vol. 48(10).
    3. Foxon, T. J. & Gross, R. & Chase, A. & Howes, J. & Arnall, A. & Anderson, D., 2005. "UK innovation systems for new and renewable energy technologies: drivers, barriers and systems failures," Energy Policy, Elsevier, vol. 33(16), pages 2123-2137, November.
    4. Mayyas Alsalman & Vian Ahmed & Zied Bahroun & Sara Saboor, 2023. "An Economic Analysis of Solar Energy Generation Policies in the UAE," Energies, MDPI, vol. 16(7), pages 1-25, March.
    5. Curci, Ylenia & Mongeau Ospina, Christian A., 2016. "Investigating biofuels through network analysis," Energy Policy, Elsevier, vol. 97(C), pages 60-72.
    6. Zhang, Hui & Cao, Libin & Zhang, Bing, 2017. "Emissions trading and technology adoption: An adaptive agent-based analysis of thermal power plants in China," Resources, Conservation & Recycling, Elsevier, vol. 121(C), pages 23-32.
    7. Hellsmark, Hans & Hansen, Teis, 2020. "A new dawn for (oil) incumbents within the bioeconomy? Trade-offs and lessons for policy," Energy Policy, Elsevier, vol. 145(C).
    8. Brown, David P. & Muehlenbachs, Lucija, 2023. "The Value of Electricity Reliability: Evidence from Battery Adoption," Working Papers 2023-5, University of Alberta, Department of Economics.
    9. Grafström, Jonas & Poudineh, Rahmat, 2023. "No evidence of counteracting policy effects on European solar power invention and diffusion," Energy Policy, Elsevier, vol. 172(C).
    10. Monica Santillan Vera & Lilia Garcia Manrique & Isabel Rodriguez Pena & Angel de la Vega Navarro, 2021. "Drivers of Electricity GHG Emissions and the Role of Natural Gas in Mexican Energy Transition," Working Paper Series 1021, Department of Economics, University of Sussex Business School.
    11. Marzieh Ronaghi & Michael Reed & Sayed Saghaian, 2020. "The impact of economic factors and governance on greenhouse gas emission," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 22(2), pages 153-172, April.
    12. Marletto, Gerardo, 2011. "Structure, agency and change in the car regime. A review of the literature," European Transport \ Trasporti Europei, ISTIEE, Institute for the Study of Transport within the European Economic Integration, issue 47, pages 71-88.
    13. Valeria Costantini & Francesco Crespi, 2013. "Public policies for a sustainable energy sector: regulation, diversity and fostering of innovation," Journal of Evolutionary Economics, Springer, vol. 23(2), pages 401-429, April.
    14. Ahmed S. Alahmed & Lang Tong, 2022. "Integrating Distributed Energy Resources: Optimal Prosumer Decisions and Impacts of Net Metering Tariffs," Papers 2204.06115, arXiv.org, revised May 2022.
    15. Aalbers, Rob & Shestalova, Victoria & Kocsis, Viktória, 2013. "Innovation policy for directing technical change in the power sector," Energy Policy, Elsevier, vol. 63(C), pages 1240-1250.
    16. Karlsson, Rasmus, 2012. "Carbon lock-in, rebound effects and China at the limits of statism," Energy Policy, Elsevier, vol. 51(C), pages 939-945.
    17. Nill, Jan & Kemp, Ren, 2009. "Evolutionary approaches for sustainable innovation policies: From niche to paradigm?," Research Policy, Elsevier, vol. 38(4), pages 668-680, May.
    18. Wüstenhagen, Rolf & Menichetti, Emanuela, 2012. "Strategic choices for renewable energy investment: Conceptual framework and opportunities for further research," Energy Policy, Elsevier, vol. 40(C), pages 1-10.
    19. Melliger, Marc, 2023. "Quantifying technology skewness in European multi-technology auctions and the effect of design elements and other driving factors," Energy Policy, Elsevier, vol. 175(C).
    20. Choi, Kwang Hun & Kwon, Gyu Hyun, 2023. "Strategies for sensing innovation opportunities in smart grids: In the perspective of interactive relationships between science, technology, and business," Technological Forecasting and Social Change, Elsevier, vol. 187(C).

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ecr:col022:47868. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Biblioteca CEPAL (email available below). General contact details of provider: https://edirc.repec.org/data/eclaccl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.