IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this paper

Increasing Returns in the Value of Information

Listed author(s):
  • Hector Chade

    (Arizona State University)

  • Edward E. Schlee

    (Arizona State University)

Is there an intrinsic nonconcavity to the value of information? In an influential paper, Radner and Stiglitz (1984, henceforth RS) suggests that there is. They demonstrated, in a seemingly general model, that the marginal value of a small amount of information is zero. Since costless information is always (weakly) valuable, this finding implies that, unless the information is useless, it must exhibit increasing marginal returns over some range. RS do present a few examples that violate their assumptions for which information exhibits decreasing marginal returns. Yet, the conditions under which they obtain the nonconcavity do not seem initially to be overly strong. They index the information structure, represented by a Markov matrix of state-conditional signal distributions, by a parameter representing the `amount' of information, with a zero level of the parameter representing null information. The main assumption is that this Markov matrix be a differentiable in the index parameter at null information, which seems to be a standard smoothness assumption. As noted by RS, this nonconcavity has several implications: the demand for information will be a discontinuous function of its price; agents will not buy `small' quantities of information; and agents will tend to specialize in information production. The nonconcavity has been especially vexing to the literature on experimentation. If the value of information is not concave in the present action, then the analysis of optimal experimentation is much more complex. Moreover, some recent papers have considered experimentation in strategic settings (Harrington (JET 1995); Mirman, Samuelson and Schlee (JET 1994)). In these models, the nonconcavity means that the best reply mappings may not be convex-valued, so that pure strategy equilibria may not exist. The purpose of this paper is to re-examine the conditions under which a small amount of information has zero marginal value. Much of the experimentation and information demand literature has assumed either an infinite number of signal realizations or an infinite number of states, unlike the finite RS framework. Our objective is to clarify the conditions under which the nonconcavity holds in this more common framework. This general setting will help us to evaluate the robustness of the nonconcavity. We find that the assumptions required to obtain the nonconcavityare fairly strong; although some of the assumptions are purely technical, most are substantive: we present examples showing that their failure leads to a failure of nonconcavity.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
File Function: main text
Download Restriction: no

Paper provided by Econometric Society in its series Econometric Society World Congress 2000 Contributed Papers with number 1715.

in new window

Date of creation: 01 Aug 2000
Handle: RePEc:ecm:wc2000:1715
Contact details of provider: Phone: 1 212 998 3820
Fax: 1 212 995 4487
Web page:

More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

in new window

  1. Mirman, L.J. & Samuelson, L. & Schlee, E.E., 1991. "Strategic information manipulation in duopolies," Discussion Paper 1991-37, Tilburg University, Center for Economic Research.
  2. Arrow, Kenneth J, 1985. "Informational Structure of the Firm," American Economic Review, American Economic Association, vol. 75(2), pages 303-307, May.
  3. Ian Tonks, 1984. "A Bayesian Approach to the Production of Information with a Linear Utility Function," Review of Economic Studies, Oxford University Press, vol. 51(3), pages 521-527.
  4. Singh, Nirvikar, 1985. "Monitoring and Hierarchies: The Marginal Value of Information in a Principal-Agent Model," Journal of Political Economy, University of Chicago Press, vol. 93(3), pages 599-609, June.
  5. Aghion Philippe & Bolton, Patrick & Harris Christopher & Jullien Bruno, 1991. "Optimal learning by experimentation," CEPREMAP Working Papers (Couverture Orange) 9104, CEPREMAP.
  6. Giuseppe Moscarini & Lones Smith, 1998. "Wald Revisited: The Optimal Level of Experimentation," Cowles Foundation Discussion Papers 1176, Cowles Foundation for Research in Economics, Yale University.
  7. Trefler, Daniel, 1993. "The Ignorant Monopolist: Optimal Learning with Endogenous Information," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 34(3), pages 565-581, August.
  8. Creane, Anthony, 1994. "Experimentation with Heteroskedastic Noise," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 4(2), pages 275-286, March.
  9. Kiefer, Nicholas M & Nyarko, Yaw, 1989. "Optimal Control of an Unknown Linear Process with Learning," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 30(3), pages 571-586, August.
  10. David F. Bradford & Harry H. Kelejian, 1977. "The Value of Information for Crop Forecasting in a Market System: Some Theoretical Issues," Review of Economic Studies, Oxford University Press, vol. 44(3), pages 519-531.
  11. Harrington Jr. , Joseph E., 1995. "Experimentation and Learning in a Differentiated-Products Duopoly," Journal of Economic Theory, Elsevier, vol. 66(1), pages 275-288, June.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:ecm:wc2000:1715. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Christopher F. Baum)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.