IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this article or follow this journal

An Empirical Model of Optimal Dynamic Product Launch and Exit Under Demand Uncertainty

  • Günter J. Hitsch

    ()

    (Graduate School of Business, University of Chicago, 5807 South Woodlawn Avenue, Chicago, Illinois 60637)

Registered author(s):

    This paper considers the decision problem of a firm that is uncertain about the demand, and hence profitability, of a new product. We develop a model of a decision maker who sequentially learns about the true product profitability from observed product sales. Based on the current information, the decision maker decides whether to scrap the product. Central to this decision problem are sequential information gathering, and the option value of scrapping the product at any point in time. The model predicts the optimal demand for information (e.g., in the form of test marketing), and it predicts how the launch or exit policy depends on the firm's demand uncertainty. Furthermore, it predicts what fraction of newly developed products should be launched on average, and what fraction of these products will “fail,” i.e., exit. The model is solved using numerical dynamic programming techniques. We present an application of the model to the case of the U.S. ready-to-eat breakfast cereal industry. Simulations show that the value of reducing uncertainty can be large, and that under higher uncertainty firms should strongly increase the fraction of all new product opportunities launched, even if their point estimate of profits is negative. Alternative, simpler decision rules are shown to lead to large profit losses compared to our method. Finally, we find that the high observed exit rate in the U.S. ready-to-eat cereal industry is optimal and to be expected based on our model.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL: http://dx.doi.org/10.1287/mksc.1050.0140
    Download Restriction: no

    Article provided by INFORMS in its journal Marketing Science.

    Volume (Year): 25 (2006)
    Issue (Month): 1 (01-02)
    Pages: 25-50

    as
    in new window

    Handle: RePEc:inm:ormksc:v:25:y:2006:i:1:p:25-50
    Contact details of provider: Postal: 7240 Parkway Drive, Suite 300, Hanover, MD 21076 USA
    Phone: +1-443-757-3500
    Fax: 443-757-3515
    Web page: http://www.informs.org/
    Email:


    More information through EDIRC

    No references listed on IDEAS
    You can help add them by filling out this form.

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:inm:ormksc:v:25:y:2006:i:1:p:25-50. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Mirko Janc)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.