IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

Regressions, Short and Long

  • Philip Cross

    (Georgetown University)

  • Charles F. Manski

    (Northwestern University)

We study the problem of identification of the long regression E(y|x,z) when the short conditional distributions P(y|x) and P(z|x) are known but the long conditional distribution P(y|x,z) is not known. This problem often arises when a researcher utilizes data from two separate data sets. (A leading example is the ecological inference problem of political science, where voting behavior across electoral districts is observed from administrative records, the demographic composition of voters within a district is observed from census data, and the researcher wants to infer voting behavior conditional on district and demographic attributes.) We isolate an identification region containing feasible values of the long regression, and show that this region forms a sharp bound on the long regression. The identification region can be calculated precisely when y has finite support. When y has infinite support we characterize two sets, one that contains the identification region, and one that is contained by it. Following this completely nonparametric analysis, we examine the identifying power yielded by exclusion restrictions across distinct covariate values. Such restrictions cause the identification region to shrink, in many cases to a single point. To illustrate the theory, we pose and address this hypothetical question: What would be the outcome if the 1996 U.S. presidential election were re-enacted in a population of different demographic composition, ceteris paribus?

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://fmwww.bc.edu/RePEc/es2000/0385.pdf
File Function: main text
Download Restriction: no

Paper provided by Econometric Society in its series Econometric Society World Congress 2000 Contributed Papers with number 0385.

as
in new window

Length:
Date of creation: 01 Aug 2000
Date of revision:
Handle: RePEc:ecm:wc2000:0385
Contact details of provider: Phone: 1 212 998 3820
Fax: 1 212 995 4487
Web page: http://www.econometricsociety.org/pastmeetings.asp
Email:


More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Charles F. Manski & John V. Pepper, 2000. "Monotone Instrumental Variables, with an Application to the Returns to Schooling," Econometrica, Econometric Society, vol. 68(4), pages 997-1012, July.
  2. A. Meltzer & Peter Ordeshook & Thomas Romer, 1983. "Introduction," Public Choice, Springer, vol. 41(1), pages 1-5, January.
  3. Horowitz, Joel L & Manski, Charles F, 1995. "Identification and Robustness with Contaminated and Corrupted Data," Econometrica, Econometric Society, vol. 63(2), pages 281-302, March.
  4. A. P. Thirlwall, 1983. "Introduction," Journal of Post Keynesian Economics, M.E. Sharpe, Inc., vol. 5(3), pages 341-344, April.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:ecm:wc2000:0385. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Christopher F. Baum)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.