IDEAS home Printed from https://ideas.repec.org/p/ecl/stabus/3837.html

Optimal Experimental Design for Staggered Rollouts

Author

Listed:
  • Athey, Susan

    (Stanford Institute for Economic Policy Research)

  • Imbens, Guido W.

    (Stanford Institute for Economic Policy Research)

  • Bayati, Mohsen

    (Stanford University Graduate School of Business)

Abstract

Experimentation has become an increasingly prevalent tool for guiding policy choices, firm decisions, and product innovation. A common hurdle in designing experiments is the lack of statistical power. In this paper, we study optimal multi-period experimental design under the constraint that the treatment cannot be easily removed once implemented; for example, a government or firm might implement treatment in different geographies at different times, where the treatment cannot be easily removed due to practical constraints. The design problem is to select which units to treat at which time, intending to test hypotheses about the effect of the treatment. When the potential outcome is a linear function of a unit effect, a time effect, and observed discrete covariates, we provide an analytically feasible solution to the design problem where the variance of the estimator for the treatment effect is at most 1+O(1/N^2) times the variance of the optimal design, where N is the number of units. This solution assigns units in a staggered treatment adoption pattern, where the proportion treated is a linear function of time. In the general setting where outcomes depend on latent covariates, we show that historical data can be utilized in the optimal design. We propose a data-driven local search algorithm with the minimax decision criterion to assign units to treatment times. We demonstrate that our approach improves upon benchmark experimental designs through synthetic experiments on real-world data sets from several domains, including healthcare, finance, and retail. Finally, we consider the case where the treatment effect changes with the time of treatment, showing that the optimal design treats a smaller fraction of units at the beginning and a greater share at the end.

Suggested Citation

  • Athey, Susan & Imbens, Guido W. & Bayati, Mohsen, 2019. "Optimal Experimental Design for Staggered Rollouts," Research Papers 3837, Stanford University, Graduate School of Business.
  • Handle: RePEc:ecl:stabus:3837
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lorenzo Masoero & Suhas Vijaykumar & Thomas Richardson & James McQueen & Ido Rosen & Brian Burdick & Pat Bajari & Guido Imbens, 2021. "Multiple Randomization Designs: Estimation and Inference with Interference," Papers 2112.13495, arXiv.org, revised Dec 2025.
    2. Jonathan Roth & Pedro H. C. Sant’Anna, 2023. "Efficient Estimation for Staggered Rollout Designs," Journal of Political Economy Microeconomics, University of Chicago Press, vol. 1(4), pages 669-709.
    3. Athey, Susan & Imbens, Guido W., 2022. "Design-based analysis in Difference-In-Differences settings with staggered adoption," Journal of Econometrics, Elsevier, vol. 226(1), pages 62-79.
    4. Han, Kevin & Basse, Guillaume & Bojinov, Iavor, 2024. "Population interference in panel experiments," Journal of Econometrics, Elsevier, vol. 238(1).
    5. Jinglong Zhao, 2023. "Adaptive Neyman Allocation," Papers 2309.08808, arXiv.org, revised Jan 2026.
    6. Maria Petrova & Ananya Sen & Pinar Yildirim, 2021. "Social Media and Political Contributions: The Impact of New Technology on Political Competition," Management Science, INFORMS, vol. 67(5), pages 2997-3021, May.
    7. Kathryn N. Vasilaky & J. Michelle Brock, 2020. "Power(ful) guidelines for experimental economists," Journal of the Economic Science Association, Springer;Economic Science Association, vol. 6(2), pages 189-212, December.
    8. Hirano, Keisuke & Porter, Jack R., 2020. "Asymptotic analysis of statistical decision rules in econometrics," Handbook of Econometrics, in: Steven N. Durlauf & Lars Peter Hansen & James J. Heckman & Rosa L. Matzkin (ed.), Handbook of Econometrics, edition 1, volume 7, chapter 0, pages 283-354, Elsevier.
    9. Jinglong Zhao & Zijie Zhou, 2022. "Pigeonhole Design: Balancing Sequential Experiments from an Online Matching Perspective," Papers 2201.12936, arXiv.org, revised May 2024.
    10. Iavor Bojinov & David Simchi-Levi & Jinglong Zhao, 2023. "Design and Analysis of Switchback Experiments," Management Science, INFORMS, vol. 69(7), pages 3759-3777, July.
    11. Vivek F. Farias & Andrew A. Li & Tianyi Peng, 2021. "Learning Treatment Effects in Panels with General Intervention Patterns," Papers 2106.02780, arXiv.org, revised Mar 2023.
    12. Shan Huang & Chen Wang & Yuan Yuan & Jinglong Zhao & Brocco & Zhang, 2023. "Estimating Effects of Long-Term Treatments," Papers 2308.08152, arXiv.org, revised Dec 2025.
    13. Shuze Chen & David Simchi-Levi & Chonghuan Wang, 2024. "Improving the Estimation of Lifetime Effects in A/B Testing via Treatment Locality," Papers 2407.19618, arXiv.org, revised Sep 2025.
    14. Retsef Levi & Elisabeth Paulson & Georgia Perakis & Emily Zhang, 2024. "Heterogeneous Treatment Effects in Panel Data," Papers 2406.05633, arXiv.org.
    15. Jinglong Zhao, 2024. "Experimental Design For Causal Inference Through An Optimization Lens," Papers 2408.09607, arXiv.org, revised Aug 2024.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ecl:stabus:3837. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/gsstaus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.