IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2407.19618.html
   My bibliography  Save this paper

Improving the Estimation of Lifetime Effects in A/B Testing via Treatment Locality

Author

Listed:
  • Shuze Chen
  • David Simchi-Levi
  • Chonghuan Wang

Abstract

Utilizing randomized experiments to evaluate the effect of short-term treatments on the short-term outcomes has been well understood and become the golden standard in industrial practice. However, as service systems become increasingly dynamical and personalized, much focus is shifting toward maximizing long-term outcomes, such as customer lifetime value, through lifetime exposure to interventions. Our goal is to assess the impact of treatment and control policies on long-term outcomes from relatively short-term observations, such as those generated by A/B testing. A key managerial observation is that many practical treatments are local, affecting only targeted states while leaving other parts of the policy unchanged. This paper rigorously investigates whether and how such locality can be exploited to improve estimation of long-term effects in Markov Decision Processes (MDPs), a fundamental model of dynamic systems. We first develop optimal inference techniques for general A/B testing in MDPs and establish corresponding efficiency bounds. We then propose methods to harness the localized structure by sharing information on the non-targeted states. Our new estimator can achieve a linear reduction with the number of test arms for a major part of the variance without sacrificing unbiasedness. It also matches a tighter variance lower bound that accounts for locality. Furthermore, we extend our framework to a broad class of differentiable estimators, which encompasses many widely used approaches in practice. We show that all such estimators can benefit from variance reduction through information sharing without increasing their bias. Together, these results provide both theoretical foundations and practical tools for conducting efficient experiments in dynamic service systems with local treatments.

Suggested Citation

  • Shuze Chen & David Simchi-Levi & Chonghuan Wang, 2024. "Improving the Estimation of Lifetime Effects in A/B Testing via Treatment Locality," Papers 2407.19618, arXiv.org, revised Sep 2025.
  • Handle: RePEc:arx:papers:2407.19618
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2407.19618
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ramesh Johari & Hannah Li & Inessa Liskovich & Gabriel Y. Weintraub, 2022. "Experimental Design in Two-Sided Platforms: An Analysis of Bias," Management Science, INFORMS, vol. 68(10), pages 7069-7089, October.
    2. Duncan I. Simester & Peng Sun & John N. Tsitsiklis, 2006. "Dynamic Catalog Mailing Policies," Management Science, INFORMS, vol. 52(5), pages 683-696, May.
    3. Bruno J.D. Jacobs & Bas Donkers & Dennis Fok, 2016. "Model-Based Purchase Predictions for Large Assortments," Marketing Science, INFORMS, vol. 35(3), pages 389-404, May.
    4. Ruoxuan Xiong & Susan Athey & Mohsen Bayati & Guido Imbens, 2024. "Optimal Experimental Design for Staggered Rollouts," Management Science, INFORMS, vol. 70(8), pages 5317-5336, August.
    5. Stefan Wager & Kuang Xu, 2021. "Experimenting in Equilibrium," Management Science, INFORMS, vol. 67(11), pages 6694-6715, November.
    6. S. A. Murphy, 2003. "Optimal dynamic treatment regimes," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 65(2), pages 331-355, May.
    7. Yuchen Hu & Stefan Wager, 2022. "Switchback Experiments under Geometric Mixing," Papers 2209.00197, arXiv.org, revised Apr 2024.
    8. Zhan, Ruohan & Hadad, Vitor & Hirshberg, David A. & Athey, Susan, 2021. "Off-Policy Evaluation via Adaptive Weighting with Data from Contextual Bandits," Research Papers 3970, Stanford University, Graduate School of Business.
    9. Iavor Bojinov & David Simchi-Levi & Jinglong Zhao, 2023. "Design and Analysis of Switchback Experiments," Management Science, INFORMS, vol. 69(7), pages 3759-3777, July.
    10. Aurélie Lemmens & Sunil Gupta, 2020. "Managing Churn to Maximize Profits," Marketing Science, INFORMS, vol. 39(5), pages 956-973, September.
    11. Rembrand Koning & Sharique Hasan & Aaron Chatterji, 2022. "Experimentation and Start-up Performance: Evidence from A/B Testing," Management Science, INFORMS, vol. 68(9), pages 6434-6453, September.
    12. Chengchun Shi & Xiaoyu Wang & Shikai Luo & Hongtu Zhu & Jieping Ye & Rui Song, 2023. "Dynamic Causal Effects Evaluation in A/B Testing with a Reinforcement Learning Framework," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 118(543), pages 2059-2071, July.
    13. Jalaj Bhandari & Daniel Russo & Raghav Singal, 2021. "A Finite Time Analysis of Temporal Difference Learning with Linear Function Approximation," Operations Research, INFORMS, vol. 69(3), pages 950-973, May.
    14. Imbens,Guido W. & Rubin,Donald B., 2015. "Causal Inference for Statistics, Social, and Biomedical Sciences," Cambridge Books, Cambridge University Press, number 9780521885881, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xinqi Chen & Xingyu Bai & Zeyu Zheng & Nian Si, 2025. "Bias Analysis of Experiments for Multi-Item Multi-Period Inventory Control Policies," Papers 2501.11996, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jinglong Zhao, 2024. "Experimental Design For Causal Inference Through An Optimization Lens," Papers 2408.09607, arXiv.org, revised Aug 2024.
    2. Shan Huang & Chen Wang & Yuan Yuan & Jinglong Zhao & Brocco & Zhang, 2023. "Estimating Effects of Long-Term Treatments," Papers 2308.08152, arXiv.org, revised Dec 2024.
    3. Ke Sun & Linglong Kong & Hongtu Zhu & Chengchun Shi, 2024. "ARMA-Design: Optimal Treatment Allocation Strategies for A/B Testing in Partially Observable Time Series Experiments," Papers 2408.05342, arXiv.org, revised Jan 2025.
    4. Ruohan Zhan & Shichao Han & Yuchen Hu & Zhenling Jiang, 2024. "Estimating Treatment Effects under Recommender Interference: A Structured Neural Networks Approach," Papers 2406.14380, arXiv.org, revised Jul 2024.
    5. Luofeng Liao & Christian Kroer, 2024. "Statistical Inference and A/B Testing in Fisher Markets and Paced Auctions," Papers 2406.15522, arXiv.org, revised Mar 2025.
    6. Han, Kevin & Basse, Guillaume & Bojinov, Iavor, 2024. "Population interference in panel experiments," Journal of Econometrics, Elsevier, vol. 238(1).
    7. Ozan Candogan & Chen Chen & Rad Niazadeh, 2024. "Correlated Cluster-Based Randomized Experiments: Robust Variance Minimization," Management Science, INFORMS, vol. 70(6), pages 4069-4086, June.
    8. Xinqi Chen & Xingyu Bai & Zeyu Zheng & Nian Si, 2025. "Bias Analysis of Experiments for Multi-Item Multi-Period Inventory Control Policies," Papers 2501.11996, arXiv.org.
    9. Luofeng Liao & Christian Kroer, 2023. "Statistical Inference and A/B Testing for First-Price Pacing Equilibria," Papers 2301.02276, arXiv.org, revised Jun 2023.
    10. Jizhou Liu & Azeem M. Shaikh & Panos Toulis, 2025. "Randomization Inference in Two-Sided Market Experiments," Papers 2504.06215, arXiv.org.
    11. Jinglong Zhao, 2023. "Adaptive Neyman Allocation," Papers 2309.08808, arXiv.org, revised Sep 2025.
    12. Ruoxuan Xiong & Alex Chin & Sean J. Taylor, 2024. "Data-Driven Switchback Experiments: Theoretical Tradeoffs and Empirical Bayes Designs," Papers 2406.06768, arXiv.org.
    13. Evan Munro & David Jones & Jennifer Brennan & Roland Nelet & Vahab Mirrokni & Jean Pouget-Abadie, 2023. "Causal Estimation of User Learning in Personalized Systems," Papers 2306.00485, arXiv.org.
    14. Ruohan Zhan & Zhimei Ren & Susan Athey & Zhengyuan Zhou, 2024. "Policy Learning with Adaptively Collected Data," Management Science, INFORMS, vol. 70(8), pages 5270-5297, August.
    15. Ta-Wei Huang & Eva Ascarza, 2024. "Doing More with Less: Overcoming Ineffective Long-Term Targeting Using Short-Term Signals," Marketing Science, INFORMS, vol. 43(4), pages 863-884, July.
    16. Yusuke Narita, 2018. "Toward an Ethical Experiment," Cowles Foundation Discussion Papers 2127, Cowles Foundation for Research in Economics, Yale University.
    17. Yusuke Narita, 2018. "Experiment-as-Market: Incorporating Welfare into Randomized Controlled Trials," Cowles Foundation Discussion Papers 2127r, Cowles Foundation for Research in Economics, Yale University, revised May 2019.
    18. Luo, Shikai & Yang, Ying & Shi, Chengchun & Yao, Fang & Ye, Jieping & Zhu, Hongtu, 2024. "Policy evaluation for temporal and/or spatial dependent experiments," LSE Research Online Documents on Economics 122741, London School of Economics and Political Science, LSE Library.
    19. Athey, Susan & Imbens, Guido W., 2022. "Design-based analysis in Difference-In-Differences settings with staggered adoption," Journal of Econometrics, Elsevier, vol. 226(1), pages 62-79.
    20. Vasilis Syrgkanis & Ruohan Zhan, 2023. "Post Reinforcement Learning Inference," Papers 2302.08854, arXiv.org, revised Jun 2025.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2407.19618. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.