IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2510.22864.html
   My bibliography  Save this paper

Unifying regression-based and design-based causal inference in time-series experiments

Author

Listed:
  • Zhexiao Lin
  • Peng Ding

Abstract

Time-series experiments, also called switchback experiments or N-of-1 trials, play increasingly important roles in modern applications in medical and industrial areas. Under the potential outcomes framework, recent research has studied time-series experiments from the design-based perspective, relying solely on the randomness in the design to drive the statistical inference. Focusing on simpler statistical methods, we examine the design-based properties of regression-based methods for estimating treatment effects in time-series experiments. We demonstrate that the treatment effects of interest can be consistently estimated using ordinary least squares with an appropriately specified working model and transformed regressors. Our analysis allows for estimating a diverging number of treatment effects simultaneously, and establishes the consistency and asymptotic normality of the regression-based estimators. Additionally, we show that asymptotically, the heteroskedasticity and autocorrelation consistent variance estimators provide conservative estimates of the true, design-based variances. Importantly, although our approach relies on regression, our design-based framework allows for misspecification of the regression model.

Suggested Citation

  • Zhexiao Lin & Peng Ding, 2025. "Unifying regression-based and design-based causal inference in time-series experiments," Papers 2510.22864, arXiv.org.
  • Handle: RePEc:arx:papers:2510.22864
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2510.22864
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Michael P. Leung, 2022. "Causal Inference Under Approximate Neighborhood Interference," Econometrica, Econometric Society, vol. 90(1), pages 267-293, January.
    2. Iavor Bojinov & Neil Shephard, 2019. "Time Series Experiments and Causal Estimands: Exact Randomization Tests and Trading," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 114(528), pages 1665-1682, October.
    3. Andrews, Donald W K, 1991. "Heteroskedasticity and Autocorrelation Consistent Covariance Matrix Estimation," Econometrica, Econometric Society, vol. 59(3), pages 817-858, May.
    4. Whitney Newey & Kenneth West, 2014. "A simple, positive semi-definite, heteroscedasticity and autocorrelation consistent covariance matrix," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 33(1), pages 125-132.
    5. Newey, Whitney K & Stoker, Thomas M, 1993. "Efficiency of Weighted Average Derivative Estimators and Index Models," Econometrica, Econometric Society, vol. 61(5), pages 1199-1223, September.
    6. Jason Wu & Peng Ding, 2021. "Randomization Tests for Weak Null Hypotheses in Randomized Experiments," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 116(536), pages 1898-1913, October.
    7. Fangzhou Su & Peng Ding, 2021. "Model‐assisted analyses of cluster‐randomized experiments," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 83(5), pages 994-1015, November.
    8. Graham, Bryan S. & Pinto, Cristine Campos de Xavier, 2022. "Semiparametrically efficient estimation of the average linear regression function," Journal of Econometrics, Elsevier, vol. 226(1), pages 115-138.
    9. Colin B Fogarty, 2018. "Regression-assisted inference for the average treatment effect in paired experiments," Biometrika, Biometrika Trust, vol. 105(4), pages 994-1000.
    10. Xinran Li & Peng Ding, 2017. "General Forms of Finite Population Central Limit Theorems with Applications to Causal Inference," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(520), pages 1759-1769, October.
    11. Iavor Bojinov & David Simchi-Levi & Jinglong Zhao, 2023. "Design and Analysis of Switchback Experiments," Management Science, INFORMS, vol. 69(7), pages 3759-3777, July.
    12. D’Amour, Alexander & Ding, Peng & Feller, Avi & Lei, Lihua & Sekhon, Jasjeet, 2021. "Overlap in observational studies with high-dimensional covariates," Journal of Econometrics, Elsevier, vol. 221(2), pages 644-654.
    13. Iavor Bojinov & Ashesh Rambachan & Neil Shephard, 2021. "Panel experiments and dynamic causal effects: A finite population perspective," Quantitative Economics, Econometric Society, vol. 12(4), pages 1171-1196, November.
    14. Han, Kevin & Basse, Guillaume & Bojinov, Iavor, 2024. "Population interference in panel experiments," Journal of Econometrics, Elsevier, vol. 238(1).
    15. Imbens,Guido W. & Rubin,Donald B., 2015. "Causal Inference for Statistics, Social, and Biomedical Sciences," Cambridge Books, Cambridge University Press, number 9780521885881, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jinglong Zhao, 2024. "Experimental Design For Causal Inference Through An Optimization Lens," Papers 2408.09607, arXiv.org, revised Aug 2024.
    2. Han, Kevin & Basse, Guillaume & Bojinov, Iavor, 2024. "Population interference in panel experiments," Journal of Econometrics, Elsevier, vol. 238(1).
    3. Haoge Chang, 2023. "Design-based Estimation Theory for Complex Experiments," Papers 2311.06891, arXiv.org, revised May 2025.
    4. Yuehao Bai & Azeem M. Shaikh & Max Tabord-Meehan, 2024. "A Primer on the Analysis of Randomized Experiments and a Survey of some Recent Advances," Papers 2405.03910, arXiv.org, revised Apr 2025.
    5. Iavor Bojinov & David Simchi-Levi & Jinglong Zhao, 2023. "Design and Analysis of Switchback Experiments," Management Science, INFORMS, vol. 69(7), pages 3759-3777, July.
    6. Sadegh Shirani & Mohsen Bayati, 2025. "On Evolution-Based Models for Experimentation Under Interference," Papers 2511.21675, arXiv.org.
    7. Yuehao Bai & Xun Huang & Joseph P. Romano & Azeem M. Shaikh & Max Tabord-Meehan, 2025. "A New Design-Based Variance Estimator for Finely Stratified Experiments," Papers 2503.10851, arXiv.org, revised May 2025.
    8. Zhao, Anqi & Ding, Peng, 2024. "No star is good news: A unified look at rerandomization based on p-values from covariate balance tests," Journal of Econometrics, Elsevier, vol. 241(1).
    9. Ding, Peng, 2021. "The Frisch–Waugh–Lovell theorem for standard errors," Statistics & Probability Letters, Elsevier, vol. 168(C).
    10. Ganesh Karapakula, 2023. "Stable Probability Weighting: Large-Sample and Finite-Sample Estimation and Inference Methods for Heterogeneous Causal Effects of Multivalued Treatments Under Limited Overlap," Papers 2301.05703, arXiv.org, revised Jan 2023.
    11. Iavor Bojinov & Ashesh Rambachan & Neil Shephard, 2021. "Panel experiments and dynamic causal effects: A finite population perspective," Quantitative Economics, Econometric Society, vol. 12(4), pages 1171-1196, November.
    12. Jizhou Liu & Azeem M. Shaikh & Panos Toulis, 2025. "Randomization Inference in Two-Sided Market Experiments," Papers 2504.06215, arXiv.org.
    13. Ashesh Rambachan & Neil Shephard, 2019. "When do common time series estimands have nonparametric causal meaning?," Papers 1903.01637, arXiv.org, revised Jan 2025.
    14. Raimondo Pala, 2025. "Control VAR: a counterfactual based approach to inference in macroeconomics," Papers 2510.23762, arXiv.org.
    15. Taehyeon Koo & Zijian Guo, 2025. "Distributionally Robust Synthetic Control: Ensuring Robustness Against Highly Correlated Controls and Weight Shifts," Papers 2511.02632, arXiv.org.
    16. Yuchen Hu & Stefan Wager, 2022. "Switchback Experiments under Geometric Mixing," Papers 2209.00197, arXiv.org, revised Dec 2025.
    17. Fangzhou Su & Peng Ding, 2021. "Model‐assisted analyses of cluster‐randomized experiments," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 83(5), pages 994-1015, November.
    18. Peng Ding, 2020. "The Frisch--Waugh--Lovell Theorem for Standard Errors," Papers 2009.06621, arXiv.org.
    19. Zhao, Anqi & Ding, Peng, 2021. "Covariate-adjusted Fisher randomization tests for the average treatment effect," Journal of Econometrics, Elsevier, vol. 225(2), pages 278-294.
    20. Dae Woong Ham & Jiaze Qiu, 2023. "Hypothesis testing in adaptively sampled data: ART to maximize power beyond iid sampling," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 32(3), pages 998-1037, September.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2510.22864. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.