IDEAS home Printed from https://ideas.repec.org/a/spr/testjl/v32y2023i3d10.1007_s11749-023-00861-2.html
   My bibliography  Save this article

Hypothesis testing in adaptively sampled data: ART to maximize power beyond iid sampling

Author

Listed:
  • Dae Woong Ham

    (Harvard University)

  • Jiaze Qiu

    (Harvard University)

Abstract

Testing whether a variable of interest affects the outcome is one of the most fundamental problems in statistics and is often the main scientific question of interest. To tackle this problem, the conditional randomization test (CRT) is widely used to test the independence of variable(s) of interest (X) with an outcome (Y) holding other variable(s) (Z) fixed. The CRT uses “Model-X” inference framework that relies solely on the iid sampling of (X, Z) to produce exact finite-sample p values that are constructed using any test statistic. We propose a new method, the adaptive randomization test (ART), that tackles the same independence problem while allowing the data to be adaptively sampled. Like the CRT, the ART relies solely on knowing the (adaptive) sampling distribution of (X, Z). Although the ART allows practitioners to flexibly design and analyze adaptive experiments, the method itself does not guarantee a powerful adaptive sampling procedure. For this reason, we show substantial power gains obtained from adaptively sampling compared to the typical iid sampling procedure in a multi-arm bandit setting and an application in conjoint analysis. We believe that the proposed adaptive procedure is successful because it takes arms that may initially look like “fake” signals due to random chance and stabilizes them closer to “null” signals and samples more/less from signal/null arms.

Suggested Citation

  • Dae Woong Ham & Jiaze Qiu, 2023. "Hypothesis testing in adaptively sampled data: ART to maximize power beyond iid sampling," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 32(3), pages 998-1037, September.
  • Handle: RePEc:spr:testjl:v:32:y:2023:i:3:d:10.1007_s11749-023-00861-2
    DOI: 10.1007/s11749-023-00861-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11749-023-00861-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11749-023-00861-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Iavor Bojinov & Neil Shephard, 2019. "Time Series Experiments and Causal Estimands: Exact Randomization Tests and Trading," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 114(528), pages 1665-1682, October.
    2. Jason Wu & Peng Ding, 2021. "Randomization Tests for Weak Null Hypotheses in Randomized Experiments," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 116(536), pages 1898-1913, October.
    3. Shi, Chengchun & Wang, Xiaoyu & Luo, Shikai & Zhu, Hongtu & Ye, Jieping & Song, Rui, 2022. "Dynamic causal effects evaluation in A/B testing with a reinforcement learning framework," LSE Research Online Documents on Economics 113310, London School of Economics and Political Science, LSE Library.
    4. Emmanuel Candès & Yingying Fan & Lucas Janson & Jinchi Lv, 2018. "Panning for gold: ‘model‐X’ knockoffs for high dimensional controlled variable selection," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 80(3), pages 551-577, June.
    5. Jens Hainmueller & Daniel J. Hopkins, 2015. "The Hidden American Immigration Consensus: A Conjoint Analysis of Attitudes toward Immigrants," American Journal of Political Science, John Wiley & Sons, vol. 59(3), pages 529-548, July.
    6. Imbens,Guido W. & Rubin,Donald B., 2015. "Causal Inference for Statistics, Social, and Biomedical Sciences," Cambridge Books, Cambridge University Press, number 9780521885881, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shi, Chengchun & Wan, Runzhe & Song, Ge & Luo, Shikai & Zhu, Hongtu & Song, Rui, 2023. "A multiagent reinforcement learning framework for off-policy evaluation in two-sided markets," LSE Research Online Documents on Economics 117174, London School of Economics and Political Science, LSE Library.
    2. Davide Viviano & Jelena Bradic, 2019. "Synthetic learner: model-free inference on treatments over time," Papers 1904.01490, arXiv.org, revised Aug 2022.
    3. Han, Kevin & Basse, Guillaume & Bojinov, Iavor, 2024. "Population interference in panel experiments," Journal of Econometrics, Elsevier, vol. 238(1).
    4. Billy Ferguson & Brad Ross, 2020. "Assessing the Sensitivity of Synthetic Control Treatment Effect Estimates to Misspecification Error," Papers 2012.15367, arXiv.org, revised Feb 2021.
    5. Iavor Bojinov & Ashesh Rambachan & Neil Shephard, 2021. "Panel experiments and dynamic causal effects: A finite population perspective," Quantitative Economics, Econometric Society, vol. 12(4), pages 1171-1196, November.
    6. Ke Zhu & Hanzhong Liu, 2023. "Pair‐switching rerandomization," Biometrics, The International Biometric Society, vol. 79(3), pages 2127-2142, September.
    7. Ashesh Rambachan & Neil Shephard, 2019. "When do common time series estimands have nonparametric causal meaning?," Papers 1903.01637, arXiv.org, revised Jan 2025.
    8. Li, Ting & Shi, Chengchun & Lu, Zhaohua & Li, Yi & Zhu, Hongtu, 2024. "Evaluating dynamic conditional quantile treatment effects with applications in ridesharing," LSE Research Online Documents on Economics 122488, London School of Economics and Political Science, LSE Library.
    9. Yuehao Bai & Azeem M. Shaikh & Max Tabord-Meehan, 2024. "A Primer on the Analysis of Randomized Experiments and a Survey of some Recent Advances," Papers 2405.03910, arXiv.org, revised Apr 2025.
    10. Fiammetta Menchetti & Fabrizio Cipollini & Fabrizia Mealli, 2021. "Estimating the causal effect of an intervention in a time series setting: the C-ARIMA approach," Papers 2103.06740, arXiv.org, revised Sep 2021.
    11. Luofeng Liao & Christian Kroer, 2024. "Statistical Inference and A/B Testing in Fisher Markets and Paced Auctions," Papers 2406.15522, arXiv.org, revised Mar 2025.
    12. Jinglong Zhao, 2024. "Experimental Design For Causal Inference Through An Optimization Lens," Papers 2408.09607, arXiv.org, revised Aug 2024.
    13. Haoge Chang & Joel A. Middleton & P. M. Aronow, 2024. "Exact Bias Correction for Linear Adjustment of Randomized Controlled Trials," Econometrica, Econometric Society, vol. 92(5), pages 1503-1519, September.
    14. Iavor Bojinov & David Simchi-Levi & Jinglong Zhao, 2023. "Design and Analysis of Switchback Experiments," Management Science, INFORMS, vol. 69(7), pages 3759-3777, July.
    15. Fiammetta Menchetti & Fabrizio Cipollini & Fabrizia Mealli, 2023. "Combining counterfactual outcomes and ARIMA models for policy evaluation," The Econometrics Journal, Royal Economic Society, vol. 26(1), pages 1-24.
    16. Haoge Chang, 2023. "Design-based Estimation Theory for Complex Experiments," Papers 2311.06891, arXiv.org.
    17. Ganesh Karapakula, 2023. "Stable Probability Weighting: Large-Sample and Finite-Sample Estimation and Inference Methods for Heterogeneous Causal Effects of Multivalued Treatments Under Limited Overlap," Papers 2301.05703, arXiv.org, revised Jan 2023.
    18. Davide Viviano & Jelena Bradic, 2021. "Dynamic covariate balancing: estimating treatment effects over time with potential local projections," Papers 2103.01280, arXiv.org, revised Jan 2024.
    19. Viviano, Davide & Bradic, Jelena, 2023. "Synthetic Learner: Model-free inference on treatments over time," Journal of Econometrics, Elsevier, vol. 234(2), pages 691-713.
    20. David M. Ritzwoller & Joseph P. Romano & Azeem M. Shaikh, 2024. "Randomization Inference: Theory and Applications," Papers 2406.09521, arXiv.org, revised Feb 2025.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:testjl:v:32:y:2023:i:3:d:10.1007_s11749-023-00861-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.