IDEAS home Printed from https://ideas.repec.org/a/bla/jorssb/v80y2018i3p551-577.html
   My bibliography  Save this article

Panning for gold: ‘model‐X’ knockoffs for high dimensional controlled variable selection

Author

Listed:
  • Emmanuel Candès
  • Yingying Fan
  • Lucas Janson
  • Jinchi Lv

Abstract

Many contemporary large‐scale applications involve building interpretable models linking a large set of potential covariates to a response in a non‐linear fashion, such as when the response is binary. Although this modelling problem has been extensively studied, it remains unclear how to control the fraction of false discoveries effectively even in high dimensional logistic regression, not to mention general high dimensional non‐linear models. To address such a practical problem, we propose a new framework of ‘model‐X’ knockoffs, which reads from a different perspective the knockoff procedure that was originally designed for controlling the false discovery rate in linear models. Whereas the knockoffs procedure is constrained to homoscedastic linear models with n⩾p, the key innovation here is that model‐X knockoffs provide valid inference from finite samples in settings in which the conditional distribution of the response is arbitrary and completely unknown. Furthermore, this holds no matter the number of covariates. Correct inference in such a broad setting is achieved by constructing knockoff variables probabilistically instead of geometrically. To do this, our approach requires that the covariates are random (independent and identically distributed rows) with a distribution that is known, although we provide preliminary experimental evidence that our procedure is robust to unknown or estimated distributions. To our knowledge, no other procedure solves the controlled variable selection problem in such generality but, in the restricted settings where competitors exist, we demonstrate the superior power of knockoffs through simulations. Finally, we apply our procedure to data from a case–control study of Crohn's disease in the UK, making twice as many discoveries as the original analysis of the same data.

Suggested Citation

  • Emmanuel Candès & Yingying Fan & Lucas Janson & Jinchi Lv, 2018. "Panning for gold: ‘model‐X’ knockoffs for high dimensional controlled variable selection," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 80(3), pages 551-577, June.
  • Handle: RePEc:bla:jorssb:v:80:y:2018:i:3:p:551-577
    DOI: 10.1111/rssb.12265
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/rssb.12265
    Download Restriction: no

    File URL: https://libkey.io/10.1111/rssb.12265?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssb:v:80:y:2018:i:3:p:551-577. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.