IDEAS home Printed from https://ideas.repec.org/a/wly/emetrp/v92y2024i5p1503-1519.html
   My bibliography  Save this article

Exact Bias Correction for Linear Adjustment of Randomized Controlled Trials

Author

Listed:
  • Haoge Chang
  • Joel A. Middleton
  • P. M. Aronow

Abstract

Freedman (2008a,b) showed that the linear regression estimator is biased for the analysis of randomized controlled trials under the randomization model. Under Freedman's assumptions, we derive exact closed‐form bias corrections for the linear regression estimator. We show that the limiting distribution of the bias corrected estimator is identical to the uncorrected estimator. Taken together with results from Lin (2013), our results show that Freedman's theoretical arguments against the use of regression adjustment can be resolved with minor modifications to practice.

Suggested Citation

  • Haoge Chang & Joel A. Middleton & P. M. Aronow, 2024. "Exact Bias Correction for Linear Adjustment of Randomized Controlled Trials," Econometrica, Econometric Society, vol. 92(5), pages 1503-1519, September.
  • Handle: RePEc:wly:emetrp:v:92:y:2024:i:5:p:1503-1519
    DOI: 10.3982/ECTA20289
    as

    Download full text from publisher

    File URL: https://doi.org/10.3982/ECTA20289
    Download Restriction: no

    File URL: https://libkey.io/10.3982/ECTA20289?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Guido W. Imbens, 2010. "Better LATE Than Nothing: Some Comments on Deaton (2009) and Heckman and Urzua (2009)," Journal of Economic Literature, American Economic Association, vol. 48(2), pages 399-423, June.
    2. Jason Wu & Peng Ding, 2021. "Randomization Tests for Weak Null Hypotheses in Randomized Experiments," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 116(536), pages 1898-1913, October.
    3. Tan, Zhiqiang, 2014. "Second-order asymptotic theory for calibration estimators in sampling and missing-data problems," Journal of Multivariate Analysis, Elsevier, vol. 131(C), pages 240-253.
    4. Imbens,Guido W. & Rubin,Donald B., 2015. "Causal Inference for Statistics, Social, and Biomedical Sciences," Cambridge Books, Cambridge University Press, number 9780521885881, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Öberg, Stefan, 2018. "Instrumental variables based on twin births are by definition not valid (v.3.0)," SocArXiv zux9s, Center for Open Science.
    2. Susan Athey & Raj Chetty & Guido Imbens, 2020. "Combining Experimental and Observational Data to Estimate Treatment Effects on Long Term Outcomes," Papers 2006.09676, arXiv.org.
    3. Haoge Chang & Joel Middleton & P. M. Aronow, 2021. "Exact Bias Correction for Linear Adjustment of Randomized Controlled Trials," Papers 2110.08425, arXiv.org, revised Oct 2021.
    4. Guido W. Imbens, 2022. "Causality in Econometrics: Choice vs Chance," Econometrica, Econometric Society, vol. 90(6), pages 2541-2566, November.
    5. Denis Fougère & Nicolas Jacquemet, 2020. "Policy Evaluation Using Causal Inference Methods," Working Papers hal-03455978, HAL.
    6. Guido W. Imbens, 2020. "Potential Outcome and Directed Acyclic Graph Approaches to Causality: Relevance for Empirical Practice in Economics," Journal of Economic Literature, American Economic Association, vol. 58(4), pages 1129-1179, December.
    7. Jeffrey Smith & Arthur Sweetman, 2016. "Viewpoint: Estimating the causal effects of policies and programs," Canadian Journal of Economics, Canadian Economics Association, vol. 49(3), pages 871-905, August.
    8. Difang Huang & Jiti Gao & Tatsushi Oka, 2022. "Semiparametric Single-Index Estimation for Average Treatment Effects," Papers 2206.08503, arXiv.org, revised Apr 2024.
    9. Susan Athey & Guido W. Imbens, 2017. "The State of Applied Econometrics: Causality and Policy Evaluation," Journal of Economic Perspectives, American Economic Association, vol. 31(2), pages 3-32, Spring.
    10. Haoge Chang, 2023. "Design-based Estimation Theory for Complex Experiments," Papers 2311.06891, arXiv.org.
    11. Ganesh Karapakula, 2023. "Stable Probability Weighting: Large-Sample and Finite-Sample Estimation and Inference Methods for Heterogeneous Causal Effects of Multivalued Treatments Under Limited Overlap," Papers 2301.05703, arXiv.org, revised Jan 2023.
    12. Denis Fougère & Nicolas Jacquemet, 2019. "Causal Inference and Impact Evaluation," Economie et Statistique / Economics and Statistics, Institut National de la Statistique et des Etudes Economiques (INSEE), issue 510-511-5, pages 181-200.
    13. Shixiao Zhang & Peisong Han & Changbao Wu, 2023. "Calibration Techniques Encompassing Survey Sampling, Missing Data Analysis and Causal Inference," International Statistical Review, International Statistical Institute, vol. 91(2), pages 165-192, August.
    14. Öberg, Stefan, 2019. "Too LATE for Natural Experiments: A Critique of Local Average Treatment Effects Using the Example of Angrist and Evans (1998)," Göteborg Papers in Economic History 25, University of Gothenburg, Unit for Economic History.
    15. Hyunseung Kang & Laura Peck & Luke Keele, 2018. "Inference for instrumental variables: a randomization inference approach," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 181(4), pages 1231-1254, October.
    16. Rajeev Dehejia & Cristian Pop-Eleches & Cyrus Samii, 2021. "From Local to Global: External Validity in a Fertility Natural Experiment," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 39(1), pages 217-243, January.
    17. Jeffrey D. Michler & Anna Josephson, 2022. "Recent developments in inference: practicalities for applied economics," Chapters, in: A Modern Guide to Food Economics, chapter 11, pages 235-268, Edward Elgar Publishing.
    18. Edward Wu & Johann A. Gagnon-Bartsch, 2021. "Design-Based Covariate Adjustments in Paired Experiments," Journal of Educational and Behavioral Statistics, , vol. 46(1), pages 109-132, February.
    19. Ke Zhu & Hanzhong Liu, 2023. "Pair‐switching rerandomization," Biometrics, The International Biometric Society, vol. 79(3), pages 2127-2142, September.
    20. Jeff L. McMullin & Bryce Schonberger, 2020. "Entropy-balanced accruals," Review of Accounting Studies, Springer, vol. 25(1), pages 84-119, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:emetrp:v:92:y:2024:i:5:p:1503-1519. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/essssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.