IDEAS home Printed from https://ideas.repec.org/p/ecl/corcae/08-02.html
   My bibliography  Save this paper

Default Estimation, Correlated Defaults, and Expert Information

Author

Listed:
  • Kiefer, Nicholas M.

    (Cornell U and US Department of the Treasury)

Abstract

Capital allocation decisions are made on the basis of an assessment of creditworthiness. Default is a rare event for most segments of a bank's portfolio and data information can be minimal. Inference about default rates is essential for efficient capital allocation, for risk management and for compliance with the requirements of the Basel II rules on capital standards for banks. Expert information is crucial in inference about defaults. A Bayesian approach is proposed and illustrated using prior distributions assessed from industry experts. A maximum entropy approach is used to represent expert information. The binomial model, most common in applications, is extended to allow correlated defaults yet remain consistent with Basel II. The application shows that probabilistic information can be elicited from experts and econometric methods can be useful even when data information is sparse.

Suggested Citation

  • Kiefer, Nicholas M., 2008. "Default Estimation, Correlated Defaults, and Expert Information," Working Papers 08-02, Cornell University, Center for Analytic Economics.
  • Handle: RePEc:ecl:corcae:08-02
    as

    Download full text from publisher

    File URL: https://cae.economics.cornell.edu/08-02.pdf
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Sanjiv R. Das & Darrell Duffie & Nikunj Kapadia & Leandro Saita, 2007. "Common Failings: How Corporate Defaults Are Correlated," Journal of Finance, American Finance Association, vol. 62(1), pages 93-117, February.
    2. Nickell, Pamela & Perraudin, William & Varotto, Simone, 2000. "Stability of rating transitions," Journal of Banking & Finance, Elsevier, vol. 24(1-2), pages 203-227, January.
    3. Yaw Nyarko & Andrew Schotter, 2002. "An Experimental Study of Belief Learning Using Elicited Beliefs," Econometrica, Econometric Society, vol. 70(3), pages 971-1005, May.
    4. Gordy, Michael B., 2003. "A risk-factor model foundation for ratings-based bank capital rules," Journal of Financial Intermediation, Elsevier, vol. 12(3), pages 199-232, July.
    5. Garthwaite, Paul H. & Kadane, Joseph B. & O'Hagan, Anthony, 2005. "Statistical Methods for Eliciting Probability Distributions," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 680-701, June.
    6. Umesh Gavasakar, 1988. "A Comparison of Two Elicitation Methods for a Prior Distribution for a Binomial Parameter," Management Science, INFORMS, vol. 34(6), pages 784-790, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dalla Valle, Luciana & De Giuli, Maria Elena & Tarantola, Claudia & Manelli, Claudio, 2016. "Default probability estimation via pair copula constructions," European Journal of Operational Research, Elsevier, vol. 249(1), pages 298-311.
    2. Yi-Ping Chang & Chih-Tun Yu, 2014. "Bayesian confidence intervals for probability of default and asset correlation of portfolio credit risk," Computational Statistics, Springer, vol. 29(1), pages 331-361, February.
    3. Dirk Tasche, 2011. "Bayesian estimation of probabilities of default for low default portfolios," Papers 1112.5550, arXiv.org, revised Aug 2013.
    4. Peluso, Stefano & Mira, Antonietta & Muliere, Pietro, 2015. "Reinforced urn processes for credit risk models," Journal of Econometrics, Elsevier, vol. 184(1), pages 1-12.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ecl:corcae:08-02. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (). General contact details of provider: http://edirc.repec.org/data/cacorus.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.