IDEAS home Printed from https://ideas.repec.org/p/eca/wpaper/2013-314257.html
   My bibliography  Save this paper

Rank-Based Testing for Semiparametric VAR Models: a measure transportation approach

Author

Listed:
  • Marc Hallin
  • Davide La Vecchia
  • Hang Liu

Abstract

We develop a class of tests for semiparametric vector autoregressive (VAR) models with unspecified innovation densities, based on the recent measure-transportation-based concepts of multivariate center-outward ranks and signs. We show that these concepts, combined with Le Cam's asymptotic theory of statistical experiments, yield novel testing procedures, which (a) are valid under a broad class of innovation densities (possibly non-elliptical, skewed, and/or with infinite moments), (b) are optimal (locally asymptotically maximin or most stringent) at selected ones, and (c) are robust against additive outliers. In order to do so, we establish a Hajek asymptotic representation result, of independent interest, for a general class of center-outward rank-based serial statistics. As an illustration, we consider the problems of testing the absence of serial correlation in multiple-output and possibly non-linear regression (an extension of the classical Durbin-Watson problem) and the sequential identification of the order p of a vector autoregressive (VAR(p)) model. A Monte Carlo comparative study of our tests and their routinely-applied Gaussian competitors demonstrates the benefits (in terms of size, power, and robustness) of our methodology; these benefits are particularly significant in the presence of asymmetric and leptokurtic innovation densities. A real data application concludes the paper.

Suggested Citation

  • Marc Hallin & Davide La Vecchia & Hang Liu, 2020. "Rank-Based Testing for Semiparametric VAR Models: a measure transportation approach," Working Papers ECARES 2020-47, ULB -- Universite Libre de Bruxelles.
  • Handle: RePEc:eca:wpaper:2013/314257
    as

    Download full text from publisher

    File URL: https://dipot.ulb.ac.be/dspace/bitstream/2013/314257/3/2020-47-HALLIN_LAVECCHIA_LIU-rank-based.pdf
    File Function: Full text for the whole work, or for a work part
    Download Restriction: no

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eca:wpaper:2013/314257. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Benoit Pauwels). General contact details of provider: http://edirc.repec.org/data/arulbbe.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.