IDEAS home Printed from
MyIDEAS: Login to save this paper or follow this series

Mean-Dispersion Preferences and Constant Absolute Uncertainty Aversion

We axiomatize, in an Anscombe-Aumann framework, the class of preferences that admit a representation of the form V(f) = mu - rho(d), where mu is the mean utility of the act f with respect to a given probability, d is the vector of state-by-state utility deviations from the mean, and rho(d) is a measure of (aversion to) dispersion that corresponds to an uncertainty premium. The key feature of these mean-dispersion preferences is that they exhibit constant absolute uncertainty aversion. This class includes many well-known models of preferences from the literature on ambiguity. We show what properties of the dispersion function rho(dot) correspond to known models, to probabilistic sophistication, and to some new notions of uncertainty aversion.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
Download Restriction: no

Paper provided by Cowles Foundation for Research in Economics, Yale University in its series Cowles Foundation Discussion Papers with number 1805.

in new window

Length: 54 pages
Date of creation: Jun 2011
Date of revision:
Handle: RePEc:cwl:cwldpp:1805
Contact details of provider: Postal: Yale University, Box 208281, New Haven, CT 06520-8281 USA
Phone: (203) 432-3702
Fax: (203) 432-6167
Web page:

More information through EDIRC

Order Information: Postal: Cowles Foundation, Yale University, Box 208281, New Haven, CT 06520-8281 USA

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Castagnoli, Erio & Maccheroni, Fabio & Marinacci, Massimo, 2002. "Insurance premia consistent with the market," Insurance: Mathematics and Economics, Elsevier, vol. 31(2), pages 267-284, October.
  2. R. Rockafellar & Stan Uryasev & Michael Zabarankin, 2006. "Generalized deviations in risk analysis," Finance and Stochastics, Springer, vol. 10(1), pages 51-74, 01.
  3. Fabio Maccheroni & Massimo Marinacci & Aldo Rustichini, 2006. "Ambiguity Aversion, Robustness, and the Variational Representation of Preferences," Econometrica, Econometric Society, vol. 74(6), pages 1447-1498, November.
  4. Tomasz Strzalecki, 2011. "Axiomatic Foundations of Multiplier Preferences," Econometrica, Econometric Society, vol. 79(1), pages 47-73, 01.
  5. Peter Klibanoff & Massimo Marinacci & Sujoy Mukerji, 2005. "A Smooth Model of Decision Making under Ambiguity," Econometrica, Econometric Society, vol. 73(6), pages 1849-1892, November.
  6. Grant, Simon & Kajii, Atsushi, 2007. "The epsilon-Gini-contamination multiple priors model admits a linear-mean-standard-deviation utility representation," Economics Letters, Elsevier, vol. 95(1), pages 39-47, April.
  7. David Schmeidler, 1989. "Subjective Probability and Expected Utility without Additivity," Levine's Working Paper Archive 7662, David K. Levine.
  8. Marciano Siniscalchi, 2007. "Vector Expected Utility and Attitudes toward Variation," Discussion Papers 1455, Northwestern University, Center for Mathematical Studies in Economics and Management Science.
  9. Safra, Zvi & Segal, Uzi, 1998. "Constant Risk Aversion," Journal of Economic Theory, Elsevier, vol. 83(1), pages 19-42, November.
  10. Philippe Artzner & Freddy Delbaen & Jean-Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228.
  11. Itzhak Gilboa & David Schmeidler, 1989. "Maxmin Expected Utility with Non-Unique Prior," Post-Print hal-00753237, HAL.
  12. Quiggin, John & Chambers, Robert G, 1998. "Risk Premiums and Benefit Measures for Generalized-Expected-Utility Theories," Journal of Risk and Uncertainty, Springer, vol. 17(2), pages 121-37, November.
  13. Roberts, Kevin W S, 1980. "Possibility Theorems with Interpersonally Comparable Welfare Levels," Review of Economic Studies, Wiley Blackwell, vol. 47(2), pages 409-20, January.
  14. Cerreia-Vioglio, S. & Maccheroni, F. & Marinacci, M. & Montrucchio, L., 2011. "Uncertainty averse preferences," Journal of Economic Theory, Elsevier, vol. 146(4), pages 1275-1330, July.
  15. Mas-Colell, Andreu & Whinston, Michael D. & Green, Jerry R., 1995. "Microeconomic Theory," OUP Catalogue, Oxford University Press, number 9780195102680.
  16. Ghirardato, Paolo & Marinacci, Massimo, 2002. "Ambiguity Made Precise: A Comparative Foundation," Journal of Economic Theory, Elsevier, vol. 102(2), pages 251-289, February.
  17. Alain Chateauneuf & Rose Anne Dana & Jean-Marc Tallon, 2002. "Diversification, convex preferences and non-empty core in the Choquet expected utility model," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-00174770, HAL.
  18. Simone Cerreia-Vioglio, 2011. "Objective Rationality and Uncertainty Averse Preferences," Working Papers 413, IGIER (Innocenzo Gasparini Institute for Economic Research), Bocconi University.
  19. Thomas J. Sargent & LarsPeter Hansen, 2001. "Robust Control and Model Uncertainty," American Economic Review, American Economic Association, vol. 91(2), pages 60-66, May.
  20. Maccheroni, Fabio & Marinacci, Massimo & Rustichini, Aldo, 2006. "Dynamic variational preferences," Journal of Economic Theory, Elsevier, vol. 128(1), pages 4-44, May.
  21. Ergin, Haluk & Gul, Faruk, 2009. "A theory of subjective compound lotteries," Journal of Economic Theory, Elsevier, vol. 144(3), pages 899-929, May.
  22. Donaldson, David & Weymark, John A., 1980. "A single-parameter generalization of the Gini indices of inequality," Journal of Economic Theory, Elsevier, vol. 22(1), pages 67-86, February.
  23. Ghirardato, Paolo & Maccheroni, Fabio & Marinacci, Massimo, 2004. "Differentiating ambiguity and ambiguity attitude," Journal of Economic Theory, Elsevier, vol. 118(2), pages 133-173, October.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:cwl:cwldpp:1805. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Glena Ames)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.