IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this paper

Forecasting monthly us consumer price indexes through a disaggregated I(2) analysis

Listed author(s):
  • Senra, Eva
  • Poncela, Pilar
  • Espasa, Antoni

In this paper we carry a disaggregated study of the monthly US Consumer Price Index (CPI). We consider a breakdown of US CPI in four subindexes, corresponding to four groups of markets: energy, food, rest of commodities and rest of services. This is seen as a relevant way to increase information in forecasting US CPI because the supplies and demands in those markets have very different characteristics. Consumer prices in the last three components show I(2) behavior, while the energy subindex shows a lower order of integration, but with segmentation in the growth rate. Even restricting the analysis to the series that show the same order of integration, the trending behavior of prices in these markets can be very different. An I(2) cointegration analysis on the mentioned last three components shows that there are several sources of nonstationarity in the US CPI components. A common trend analysis based on dynamic factor models confirms these results. The different trending behavior in the market prices suggests that theories for price determinations could differ through markets. In this context, disaggregation could help to improve forecasting accuracy. To show that this conjecture is valid for the non-energy US CPI, we have performed a forecasting exercise of each component, computed afterwards the aggregated value of the non energy US CPI and compared it with the forecasts obtained directly from a model for the aggregate. The improvement in one year ahead forecasts with the disaggregated approach is more than 20%, where the root mean squared error is employed as a measure of forecasting performance.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
Download Restriction: no

Paper provided by Universidad Carlos III de Madrid. Departamento de Estadística in its series DES - Working Papers. Statistics and Econometrics. WS with number ws020301.

in new window

Date of creation: Jan 2002
Handle: RePEc:cte:wsrepe:ws020301
Contact details of provider: Web page:

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

in new window

  1. P. C. B. Phillips & S. N. Durlauf, 1986. "Multiple Time Series Regression with Integrated Processes," Review of Economic Studies, Oxford University Press, vol. 53(4), pages 473-495.
  2. Tor Jacobson & Per Jansson & Anders Vredin & Anders Warne, 2001. "Monetary policy analysis and inflation targeting in a small open economy: a VAR approach," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 16(4), pages 487-520.
  3. Dickey, David A & Fuller, Wayne A, 1981. "Likelihood Ratio Statistics for Autoregressive Time Series with a Unit Root," Econometrica, Econometric Society, vol. 49(4), pages 1057-1072, June.
  4. Bidarkota, Prasad V, 2001. "Alternative Regime Switching Models for Forecasting Inflation," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 20(1), pages 21-35, January.
  5. Philip Hans Franses, 2001. "How to deal with intercept and trend in practical cointegration analysis?," Applied Economics, Taylor & Francis Journals, vol. 33(5), pages 577-579.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:cte:wsrepe:ws020301. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Ana Poveda)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.