IDEAS home Printed from https://ideas.repec.org/p/cte/wsrepe/43773.html
   My bibliography  Save this paper

A Quantile Neural Network Framework for Twostage Stochastic Optimization

Author

Listed:
  • Tsay, Calvin

Abstract

Two-stage stochastic programming is a popular framework for optimization under uncertainty, where decision variables are split between first-stage decisions, and second-stage (or recourse) decisions, with the latter being adjusted after uncertainty is realized. These problems are often formulated using Sample Average Approximation (SAA), where uncertainty is modeled as a finite set of scenarios, resulting in a large “monolithic” problem, i.e., where the model is repeated for each scenario. The resulting models can be challenging to solve, and several problem-specific decomposition approaches have been proposed. An alternative approach is to approximate the expected second-stage objective value using a surrogate model, which can then be embedded in the first-stage problem to produce good heuristic solutions. In this work, we propose to instead model the distribution of the second-stage objective, specifically using a quantile neural network. Embedding this distributional approximation enables capturing uncertainty and is not limited to expected-value optimization, e.g., the proposed approach enables optimization of the Conditional Value at Risk (CVaR). We discuss optimization formulations for embedding the quantile neural network and demonstrate the effectiveness of the proposed framework using several computational case studies including a set of mixed-integer optimization problems.

Suggested Citation

  • Tsay, Calvin, 2024. "A Quantile Neural Network Framework for Twostage Stochastic Optimization," DES - Working Papers. Statistics and Econometrics. WS 43773, Universidad Carlos III de Madrid. Departamento de Estadística.
  • Handle: RePEc:cte:wsrepe:43773
    as

    Download full text from publisher

    File URL: https://e-archivo.uc3m.es/rest/api/core/bitstreams/099feb9a-b9bf-4052-9353-8cbe953f4c7b/content
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mahmutoğulları, Ali İrfan & Çavuş, Özlem & Aktürk, M. Selim, 2018. "Bounds on risk-averse mixed-integer multi-stage stochastic programming problems with mean-CVaR," European Journal of Operational Research, Elsevier, vol. 266(2), pages 595-608.
    2. Philippe Artzner & Freddy Delbaen & Jean‐Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228, July.
    3. Cornuejols, G. & Sridharan, R. & Thizy, J. M., 1991. "A comparison of heuristics and relaxations for the capacitated plant location problem," European Journal of Operational Research, Elsevier, vol. 50(3), pages 280-297, February.
    4. Powell, Warren B., 2019. "A unified framework for stochastic optimization," European Journal of Operational Research, Elsevier, vol. 275(3), pages 795-821.
    5. David Bergman & Teng Huang & Philip Brooks & Andrea Lodi & Arvind U. Raghunathan, 2022. "JANOS: An Integrated Predictive and Prescriptive Modeling Framework," INFORMS Journal on Computing, INFORMS, vol. 34(2), pages 807-816, March.
    6. Artur M. Schweidtmann & Alexander Mitsos, 2019. "Deterministic Global Optimization with Artificial Neural Networks Embedded," Journal of Optimization Theory and Applications, Springer, vol. 180(3), pages 925-948, March.
    7. Santoso, Tjendera & Ahmed, Shabbir & Goetschalckx, Marc & Shapiro, Alexander, 2005. "A stochastic programming approach for supply chain network design under uncertainty," European Journal of Operational Research, Elsevier, vol. 167(1), pages 96-115, November.
    8. Rockafellar, R. Tyrrell & Uryasev, Stanislav, 2002. "Conditional value-at-risk for general loss distributions," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1443-1471, July.
    9. Körpeoglu, Ersin & Yaman, Hande & Selim Aktürk, M., 2011. "A multi-stage stochastic programming approach in master production scheduling," European Journal of Operational Research, Elsevier, vol. 213(1), pages 166-179, August.
    10. W. Ackooij & I. Danti Lopez & A. Frangioni & F. Lacalandra & M. Tahanan, 2018. "Large-scale unit commitment under uncertainty: an updated literature survey," Annals of Operations Research, Springer, vol. 271(1), pages 11-85, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu Su & Changhyun Kwon, 2020. "Risk-Averse Network Design with Behavioral Conditional Value-at-Risk for Hazardous Materials Transportation," Transportation Science, INFORMS, vol. 54(1), pages 184-203, January.
    2. F. W. Meng & J. Sun & M. Goh, 2010. "Stochastic Optimization Problems with CVaR Risk Measure and Their Sample Average Approximation," Journal of Optimization Theory and Applications, Springer, vol. 146(2), pages 399-418, August.
    3. Ghaffarinasab, Nader & Çavuş, Özlem & Kara, Bahar Y., 2023. "A mean-CVaR approach to the risk-averse single allocation hub location problem with flow-dependent economies of scale," Transportation Research Part B: Methodological, Elsevier, vol. 167(C), pages 32-53.
    4. Salo, Ahti & Andelmin, Juho & Oliveira, Fabricio, 2022. "Decision programming for mixed-integer multi-stage optimization under uncertainty," European Journal of Operational Research, Elsevier, vol. 299(2), pages 550-565.
    5. Cui, Xueting & Zhu, Shushang & Sun, Xiaoling & Li, Duan, 2013. "Nonlinear portfolio selection using approximate parametric Value-at-Risk," Journal of Banking & Finance, Elsevier, vol. 37(6), pages 2124-2139.
    6. Kull, Andreas, 2009. "Sharing Risk – An Economic Perspective," ASTIN Bulletin, Cambridge University Press, vol. 39(2), pages 591-613, November.
    7. Curtis, John & Lynch, Muireann Á. & Zubiate, Laura, 2016. "The impact of the North Atlantic Oscillation on electricity markets: A case study on Ireland," Energy Economics, Elsevier, vol. 58(C), pages 186-198.
    8. Brian Tomlin & Yimin Wang, 2005. "On the Value of Mix Flexibility and Dual Sourcing in Unreliable Newsvendor Networks," Manufacturing & Service Operations Management, INFORMS, vol. 7(1), pages 37-57, June.
    9. Alexander, Gordon J. & Baptista, Alexandre M. & Yan, Shu, 2014. "Bank regulation and international financial stability: A case against the 2006 Basel framework for controlling tail risk in trading books," Journal of International Money and Finance, Elsevier, vol. 43(C), pages 107-130.
    10. Kolos Ágoston, 2012. "CVaR minimization by the SRA algorithm," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 20(4), pages 623-632, December.
    11. Vladimir Rankovic & Mikica Drenovak & Branko Uroševic & Ranko Jelic, 2016. "Mean Univariate-GARCH VaR Portfolio Optimization: Actual Portfolio Approach," CESifo Working Paper Series 5731, CESifo.
    12. Harris, Richard D.F. & Mazibas, Murat, 2013. "Dynamic hedge fund portfolio construction: A semi-parametric approach," Journal of Banking & Finance, Elsevier, vol. 37(1), pages 139-149.
    13. Maziar Sahamkhadam, 2021. "Dynamic copula-based expectile portfolios," Journal of Asset Management, Palgrave Macmillan, vol. 22(3), pages 209-223, May.
    14. Alexandre Carbonneau & Fr'ed'eric Godin, 2021. "Deep equal risk pricing of financial derivatives with non-translation invariant risk measures," Papers 2107.11340, arXiv.org.
    15. Ben Ameur, Hachmi & Ftiti, Zied & Louhichi, Waël & Yousfi, Mohamed, 2024. "Do green investments improve portfolio diversification? Evidence from mean conditional value-at-risk optimization," International Review of Financial Analysis, Elsevier, vol. 94(C).
    16. Martin Herdegen & Cosimo Munari, 2023. "An elementary proof of the dual representation of Expected Shortfall," Papers 2306.14506, arXiv.org.
    17. Matthew Norton & Valentyn Khokhlov & Stan Uryasev, 2021. "Calculating CVaR and bPOE for common probability distributions with application to portfolio optimization and density estimation," Annals of Operations Research, Springer, vol. 299(1), pages 1281-1315, April.
    18. Juan Ma & Foad Mahdavi Pajouh & Balabhaskar Balasundaram & Vladimir Boginski, 2016. "The Minimum Spanning k -Core Problem with Bounded CVaR Under Probabilistic Edge Failures," INFORMS Journal on Computing, INFORMS, vol. 28(2), pages 295-307, May.
    19. Ken Kobayashi & Yuichi Takano & Kazuhide Nakata, 2021. "Bilevel cutting-plane algorithm for cardinality-constrained mean-CVaR portfolio optimization," Journal of Global Optimization, Springer, vol. 81(2), pages 493-528, October.
    20. Yuanying Guan & Zhanyi Jiao & Ruodu Wang, 2022. "A reverse ES (CVaR) optimization formula," Papers 2203.02599, arXiv.org, revised May 2023.

    More about this item

    Keywords

    Optimization under uncertainty;

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cte:wsrepe:43773. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ana Poveda (email available below). General contact details of provider: http://portal.uc3m.es/portal/page/portal/dpto_estadistica .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.