IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v213y2011i1p166-179.html
   My bibliography  Save this article

A multi-stage stochastic programming approach in master production scheduling

Author

Listed:
  • Körpeoglu, Ersin
  • Yaman, Hande
  • Selim Aktürk, M.

Abstract

Master Production Schedules (MPS) are widely used in industry, especially within Enterprise Resource Planning (ERP) software. The classical approach for generating MPS assumes infinite capacity, fixed processing times, and a single scenario for demand forecasts. In this paper, we question these assumptions and consider a problem with finite capacity, controllable processing times, and several demand scenarios instead of just one. We use a multi-stage stochastic programming approach in order to come up with the maximum expected profit given the demand scenarios. Controllable processing times enlarge the solution space so that the limited capacity of production resources are utilized more effectively. We propose an effective formulation that enables an extensive computational study. Our computational results clearly indicate that instead of relying on relatively simple heuristic methods, multi-stage stochastic programming can be used effectively to solve MPS problems, and that controllability increases the performance of multi-stage solutions.

Suggested Citation

  • Körpeoglu, Ersin & Yaman, Hande & Selim Aktürk, M., 2011. "A multi-stage stochastic programming approach in master production scheduling," European Journal of Operational Research, Elsevier, vol. 213(1), pages 166-179, August.
  • Handle: RePEc:eee:ejores:v:213:y:2011:i:1:p:166-179
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377-2217(11)00187-1
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tang, Ou & Grubbstrom, Robert W., 2002. "Planning and replanning the master production schedule under demand uncertainty," International Journal of Production Economics, Elsevier, vol. 78(3), pages 323-334, August.
    2. Cheng, T.C. Edwin & Kovalyov, Mikhail Y. & Shakhlevich, Natalia V., 2006. "Scheduling with controllable release dates and processing times: Total completion time minimization," European Journal of Operational Research, Elsevier, vol. 175(2), pages 769-781, December.
    3. Charles C. Holt & Franco Modigliani & John F. Muth, 1956. "Derivation of a Linear Decision Rule for Production and Employment," Management Science, INFORMS, vol. 2(2), pages 159-177, January.
    4. V. Sridharan & William L. Berry & V. Udayabhanu, 1987. "Freezing the Master Production Schedule Under Rolling Planning Horizons," Management Science, INFORMS, vol. 33(9), pages 1137-1149, September.
    5. Leyvand, Yaron & Shabtay, Dvir & Steiner, George, 2010. "A unified approach for scheduling with convex resource consumption functions using positional penalties," European Journal of Operational Research, Elsevier, vol. 206(2), pages 301-312, October.
    6. Balibek, Emre & Köksalan, Murat, 2010. "A multi-objective multi-period stochastic programming model for public debt management," European Journal of Operational Research, Elsevier, vol. 205(1), pages 205-217, August.
    7. James H. Bookbinder & Jin-Yan Tan, 1988. "Strategies for the Probabilistic Lot-Sizing Problem with Service-Level Constraints," Management Science, INFORMS, vol. 34(9), pages 1096-1108, September.
    8. A. Charnes & W. W. Cooper & G. H. Symonds, 1958. "Cost Horizons and Certainty Equivalents: An Approach to Stochastic Programming of Heating Oil," Management Science, INFORMS, vol. 4(3), pages 235-263, April.
    9. Kayan, Rabia K. & Akturk, M. Selim, 2005. "A new bounding mechanism for the CNC machine scheduling problems with controllable processing times," European Journal of Operational Research, Elsevier, vol. 167(3), pages 624-643, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fateme Akhoondi & M.M. Lotfi, 2016. "A heuristic algorithm for master production scheduling problem with controllable processing times and scenario-based demands," International Journal of Production Research, Taylor & Francis Journals, vol. 54(12), pages 3659-3676, June.
    2. Serhat Gul & Brian T. Denton & John W. Fowler, 2015. "A Progressive Hedging Approach for Surgery Planning Under Uncertainty," INFORMS Journal on Computing, INFORMS, vol. 27(4), pages 755-772, November.
    3. Antonio G. Martín & Manuel Díaz-Madroñero & Josefa Mula, 2020. "Master production schedule using robust optimization approaches in an automobile second-tier supplier," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 28(1), pages 143-166, March.
    4. Bakker, Hannah & Dunke, Fabian & Nickel, Stefan, 2020. "A structuring review on multi-stage optimization under uncertainty: Aligning concepts from theory and practice," Omega, Elsevier, vol. 96(C).
    5. Badri, Hossein & Fatemi Ghomi, S.M.T. & Hejazi, Taha-Hossein, 2017. "A two-stage stochastic programming approach for value-based closed-loop supply chain network design," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 105(C), pages 1-17.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Minjiao Zhang & Simge Küçükyavuz & Saumya Goel, 2014. "A Branch-and-Cut Method for Dynamic Decision Making Under Joint Chance Constraints," Management Science, INFORMS, vol. 60(5), pages 1317-1333, May.
    2. Meixell, Mary J., 2005. "The impact of setup costs, commonality, and capacity on schedule stability: An exploratory study," International Journal of Production Economics, Elsevier, vol. 95(1), pages 95-107, January.
    3. Shabtay, Dvir & Zofi, Moshe, 2018. "Single machine scheduling with controllable processing times and an unavailability period to minimize the makespan," International Journal of Production Economics, Elsevier, vol. 198(C), pages 191-200.
    4. Brahimi, Nadjib & Absi, Nabil & Dauzère-Pérès, Stéphane & Nordli, Atle, 2017. "Single-item dynamic lot-sizing problems: An updated survey," European Journal of Operational Research, Elsevier, vol. 263(3), pages 838-863.
    5. Vargas, Vicente & Metters, Richard, 2011. "A master production scheduling procedure for stochastic demand and rolling planning horizons," International Journal of Production Economics, Elsevier, vol. 132(2), pages 296-302, August.
    6. Demirel, Edil & Özelkan, Ertunga C. & Lim, Churlzu, 2018. "Aggregate planning with Flexibility Requirements Profile," International Journal of Production Economics, Elsevier, vol. 202(C), pages 45-58.
    7. Koca, Esra & Yaman, Hande & Selim Aktürk, M., 2015. "Stochastic lot sizing problem with controllable processing times," Omega, Elsevier, vol. 53(C), pages 1-10.
    8. Wenqing Chen & Melvyn Sim & Jie Sun & Chung-Piaw Teo, 2010. "From CVaR to Uncertainty Set: Implications in Joint Chance-Constrained Optimization," Operations Research, INFORMS, vol. 58(2), pages 470-485, April.
    9. Shabtay, Dvir & Steiner, George & Zhang, Rui, 2016. "Optimal coordination of resource allocation, due date assignment and scheduling decisions," Omega, Elsevier, vol. 65(C), pages 41-54.
    10. Özen, Ulaş & Doğru, Mustafa K. & Armagan Tarim, S., 2012. "Static-dynamic uncertainty strategy for a single-item stochastic inventory control problem," Omega, Elsevier, vol. 40(3), pages 348-357.
    11. Wu, Desheng (Dash) & Lee, Chi-Guhn, 2010. "Stochastic DEA with ordinal data applied to a multi-attribute pricing problem," European Journal of Operational Research, Elsevier, vol. 207(3), pages 1679-1688, December.
    12. Timo Hilger & Florian Sahling & Horst Tempelmeier, 2016. "Capacitated dynamic production and remanufacturing planning under demand and return uncertainty," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 38(4), pages 849-876, October.
    13. Kilic, Onur A. & Tunc, Huseyin & Tarim, S. Armagan, 2018. "Heuristic policies for the stochastic economic lot sizing problem with remanufacturing under service level constraints," European Journal of Operational Research, Elsevier, vol. 267(3), pages 1102-1109.
    14. Laurent Lim, Lâm & Alpan, Gülgün & Penz, Bernard, 2014. "Reconciling sales and operations management with distant suppliers in the automotive industry: A simulation approach," International Journal of Production Economics, Elsevier, vol. 151(C), pages 20-36.
    15. Murat Köksalan & Ceren Tuncer Şakar, 2016. "An interactive approach to stochastic programming-based portfolio optimization," Annals of Operations Research, Springer, vol. 245(1), pages 47-66, October.
    16. Du-Juan Wang & Yunqiang Yin & Shuenn-Ren Cheng & T.C.E. Cheng & Chin-Chia Wu, 2016. "Due date assignment and scheduling on a single machine with two competing agents," International Journal of Production Research, Taylor & Francis Journals, vol. 54(4), pages 1152-1169, February.
    17. W. Cooper & C. Lovell, 2011. "History lessons," Journal of Productivity Analysis, Springer, vol. 36(2), pages 193-200, October.
    18. Glover, Fred & Sueyoshi, Toshiyuki, 2009. "Contributions of Professor William W. Cooper in Operations Research and Management Science," European Journal of Operational Research, Elsevier, vol. 197(1), pages 1-16, August.
    19. Andrea Consiglio & Stavros Zenios, 2015. "Risk profiles for re-profiling the sovereign debt of crisis countries," Journal of Risk Finance, Emerald Group Publishing, vol. 16(1), pages 2-26, January.
    20. Tempelmeier, Horst, 2007. "On the stochastic uncapacitated dynamic single-item lotsizing problem with service level constraints," European Journal of Operational Research, Elsevier, vol. 181(1), pages 184-194, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:213:y:2011:i:1:p:166-179. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Haili He). General contact details of provider: http://www.elsevier.com/locate/eor .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.