IDEAS home Printed from https://ideas.repec.org/p/cte/wsrepe/24521.html
   My bibliography  Save this paper

Evaluating significant effects from alternative seeding systems : a Bayesian approach, with an application to the UEFA Champions League

Author

Listed:
  • Wiper, Michael Peter
  • Forrest, David
  • Corona, Francisco
  • Tena Horrillo, Juan de Dios

Abstract

The paper discusses how to evaluate alternative seeding systems in sports competitions. Prior papers have developed an approach which uses a forecasting model at the level of the individual match and then applies Monte Carlo simulation of the whole tournament to estimate the probabilities associated with various outcomes or combinations of outcomes. This allows, for example, a measure of outcome uncertainty to be attached to each proposed seeding regime. However, this established approach takes no note of the uncertainty surrounding the parameter estimates in the underlying match forecasting model and this precludes testing for statistically significant differences between probabilities or outcome uncertainty measures under alternative regimes. We propose a Bayesian approach which resolves this weakness in standard methodology and illustrate its potential by examining the effect of seeding rule changes implemented in the UEFA Champions League, a major football tournament, in 2015. The reform appears to have increased outcome uncertainty. We identify which clubs and which sorts of clubs were favourably or unfavourably affected by the reform, distinguishing effects on probabilities of progression to different phases of the competition.

Suggested Citation

  • Wiper, Michael Peter & Forrest, David & Corona, Francisco & Tena Horrillo, Juan de Dios, 2017. "Evaluating significant effects from alternative seeding systems : a Bayesian approach, with an application to the UEFA Champions League," DES - Working Papers. Statistics and Econometrics. WS 24521, Universidad Carlos III de Madrid. Departamento de Estadística.
  • Handle: RePEc:cte:wsrepe:24521
    as

    Download full text from publisher

    File URL: https://e-archivo.uc3m.es/bitstream/handle/10016/24521/ws1703.pdf?sequence=1
    Download Restriction: no

    References listed on IDEAS

    as
    1. Geenens, Gery, 2014. "On the decisiveness of a game in a tournament," European Journal of Operational Research, Elsevier, vol. 232(1), pages 156-168.
    2. P. A. Scarf & M. M. Yusof, 2011. "A numerical study of tournament structure and seeding policy for the soccer World Cup Finals," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 65(1), pages 43-57, February.
    3. Koning, Ruud H. & Koolhaas, Michael & Renes, Gusta & Ridder, Geert, 2003. "A simulation model for football championships," European Journal of Operational Research, Elsevier, vol. 148(2), pages 268-276, July.
    4. Corona Francisco & Wiper Michael Peter & Horrillo Juan de Dios Tena, 2017. "On the importance of the probabilistic model in identifying the most decisive games in a tournament," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 13(1), pages 11-23, March.
    5. Dmitry Dagaev & Alex Suzdaltsev, 2015. "Seeding, Competitive Intensity and Quality in Knock-Out Tournaments," HSE Working papers WP BRP 91/EC/2015, National Research University Higher School of Economics.
    6. Martin, Andrew D. & Quinn, Kevin M. & Park, Jong Hee, 2011. "MCMCpack: Markov Chain Monte Carlo in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 42(i09).
    7. Wright, Mike, 2014. "OR analysis of sporting rules – A survey," European Journal of Operational Research, Elsevier, vol. 232(1), pages 1-8.
    8. Goddard, John, 2005. "Regression models for forecasting goals and match results in association football," International Journal of Forecasting, Elsevier, vol. 21(2), pages 331-340.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Keywords

    OR in sports;

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cte:wsrepe:24521. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Ana Poveda). General contact details of provider: http://portal.uc3m.es/portal/page/portal/dpto_estadistica .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.