IDEAS home Printed from https://ideas.repec.org/p/cte/werepe/28133.html
   My bibliography  Save this paper

Score-driven time series models with dynamic shape : an application to the Standard & Poor's 500 index

Author

Listed:
  • Blazsek, Szabolcs
  • Escribano, Álvaro
  • Ayala, Astrid

Abstract

We introduce new dynamic conditional score (DCS) volatility models with dynamic scale and shape parameters for the effective measurement of volatility. In the new models, we use the EGB2 (exponential generalized beta of the second kind), NIG (normal-inverse Gaussian) and Skew-Gen-t (skewed generalized-t) probability distributions. Those distributions involve several shape parameters that control the dynamic skewness, tail shape and peakedness of financial returns. We use daily return data from the Standard & Poor's 500 (S&P 500) index for the period of January 4, 1950 to December 30, 2017. We estimate all models by using the maximum likelihood (ML) method, and we present the conditions of consistency and asymptotic normality of the ML estimates. We study those conditions for the S&P 500 and we also perform diagnostic tests for the residuals. The statistical performances of several DCS specifications with dynamic shape are superior to the statistical performance of the DCS specification with constant shape. Outliers in the shape parameters are associated with important announcements that affected the United States (US) stock market. Our results motivate the application of the new DCS models to volatility measurement, pricing financial derivatives, or estimation of the value-at-risk (VaR) and expected shortfall (ES) metrics.

Suggested Citation

  • Blazsek, Szabolcs & Escribano, Álvaro & Ayala, Astrid, 2019. "Score-driven time series models with dynamic shape : an application to the Standard & Poor's 500 index," UC3M Working papers. Economics 28133, Universidad Carlos III de Madrid. Departamento de Economía.
  • Handle: RePEc:cte:werepe:28133
    as

    Download full text from publisher

    File URL: https://e-archivo.uc3m.es/bitstream/handle/10016/28133/we1905.pdf?sequence=3
    Download Restriction: no

    References listed on IDEAS

    as
    1. David Backus & Mikhail Chernov & Ian Martin, 2011. "Disasters Implied by Equity Index Options," Journal of Finance, American Finance Association, vol. 66(6), pages 1969-2012, December.
    2. Bollerslev, Tim & Todorov, Viktor & Xu, Lai, 2015. "Tail risk premia and return predictability," Journal of Financial Economics, Elsevier, vol. 118(1), pages 113-134.
    3. Nelson, Daniel B, 1991. "Conditional Heteroskedasticity in Asset Returns: A New Approach," Econometrica, Econometric Society, vol. 59(2), pages 347-370, March.
    4. Creal, Drew & Koopman, Siem Jan & Lucas, André, 2011. "A Dynamic Multivariate Heavy-Tailed Model for Time-Varying Volatilities and Correlations," Journal of Business & Economic Statistics, American Statistical Association, vol. 29(4), pages 552-563.
    5. John W. Galbraith, 2004. "Circuit Breakers and the Tail Index of Equity Returns," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 2(1), pages 109-129.
    6. Tim Bollerslev & George Tauchen & Hao Zhou, 2009. "Expected Stock Returns and Variance Risk Premia," Review of Financial Studies, Society for Financial Studies, vol. 22(11), pages 4463-4492, November.
    7. Viral V. Acharya & Lasse H. Pedersen & Thomas Philippon & Matthew Richardson, 2017. "Measuring Systemic Risk," Review of Financial Studies, Society for Financial Studies, vol. 30(1), pages 2-47.
    8. Harvey,Andrew C., 2013. "Dynamic Models for Volatility and Heavy Tails," Cambridge Books, Cambridge University Press, number 9781107630024, April.
    9. Tata Subba Rao & Granville Tunnicliffe Wilson & Andrew Harvey & Rutger-Jan Lange, 2017. "Volatility Modeling with a Generalized t Distribution," Journal of Time Series Analysis, Wiley Blackwell, vol. 38(2), pages 175-190, March.
    10. Szabolcs Blazsek & Han-Chiang Ho, 2017. "Markov regime-switching Beta--EGARCH," Applied Economics, Taylor & Francis Journals, vol. 49(47), pages 4793-4805, October.
    11. Bryan Kelly & Hao Jiang, 2014. "Editor's Choice Tail Risk and Asset Prices," Review of Financial Studies, Society for Financial Studies, vol. 27(10), pages 2841-2871.
    12. Escanciano, J. Carlos & Lobato, Ignacio N., 2009. "An automatic Portmanteau test for serial correlation," Journal of Econometrics, Elsevier, vol. 151(2), pages 140-149, August.
    13. Szabolcs Blazsek & Luis Antonio Monteros, 2017. "Dynamic conditional score models of degrees of freedom: filtering with score-driven heavy tails," Applied Economics, Taylor & Francis Journals, vol. 49(53), pages 5426-5440, November.
    14. Vuong, Quang H, 1989. "Likelihood Ratio Tests for Model Selection and Non-nested Hypotheses," Econometrica, Econometric Society, vol. 57(2), pages 307-333, March.
    15. Szabolcs Blazsek & Han-Chiang Ho & Su-Ping Liu, 2018. "Score-driven Markov-switching EGARCH models: an application to systematic risk analysis," Applied Economics, Taylor & Francis Journals, vol. 50(56), pages 6047-6060, December.
    16. Harvey, Andrew C & Shephard, Neil, 1996. "Estimation of an Asymmetric Stochastic Volatility Model for Asset Returns," Journal of Business & Economic Statistics, American Statistical Association, vol. 14(4), pages 429-434, October.
    17. Astrid Ayala & Szabolcs Blazsek, 2018. "Score-driven copula models for portfolios of two risky assets," The European Journal of Finance, Taylor & Francis Journals, vol. 24(18), pages 1861-1884, December.
    18. Blazsek, Szabolcs & Escribano, Alvaro, 2016. "Score-driven dynamic patent count panel data models," Economics Letters, Elsevier, vol. 149(C), pages 116-119.
    19. Andrew Harvey & Esther Ruiz & Neil Shephard, 1994. "Multivariate Stochastic Variance Models," Review of Economic Studies, Oxford University Press, vol. 61(2), pages 247-264.
    20. Sangjoon Kim & Neil Shephard & Siddhartha Chib, 1998. "Stochastic Volatility: Likelihood Inference and Comparison with ARCH Models," Review of Economic Studies, Oxford University Press, vol. 65(3), pages 361-393.
    21. Ole E. Barndorff‐Nielsen & Neil Shephard, 2002. "Econometric analysis of realized volatility and its use in estimating stochastic volatility models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(2), pages 253-280, May.
    22. Carmela Quintos & Zhenhong Fan & Peter C. B. Phillips, 2001. "Structural Change Tests in Tail Behaviour and the Asian Crisis," Review of Economic Studies, Oxford University Press, vol. 68(3), pages 633-663.
    23. Astrid Ayala & Szabolcs Blazsek, 2019. "Score-driven models of stochastic seasonality in location and scale: an application case study of the Indian rupee to USD exchange rate," Applied Economics, Taylor & Francis Journals, vol. 51(37), pages 4083-4103, August.
    24. Francisco Blasques & Paolo Gorgi & Siem Jan Koopman & Olivier Wintenberger, 2016. "Feasible Invertibility Conditions and Maximum Likelihood Estimation for Observation-Driven Models," Tinbergen Institute Discussion Papers 16-082/III, Tinbergen Institute.
    25. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    26. Viral Acharya & Robert Engle & Matthew Richardson, 2012. "Capital Shortfall: A New Approach to Ranking and Regulating Systemic Risks," American Economic Review, American Economic Association, vol. 102(3), pages 59-64, May.
    27. Astrid Ayala & Szabolcs Blazsek, 2018. "Equity market neutral hedge funds and the stock market: an application of score-driven copula models," Applied Economics, Taylor & Francis Journals, vol. 50(37), pages 4005-4023, August.
    28. Tim Bollerslev & Viktor Todorov, 2011. "Estimation of Jump Tails," Econometrica, Econometric Society, vol. 79(6), pages 1727-1783, November.
    29. Szabolcs Blazsek & Luis Antonio Monteros, 2017. "Event-study analysis by using dynamic conditional score models," Applied Economics, Taylor & Francis Journals, vol. 49(45), pages 4530-4541, September.
    30. Drew Creal & Siem Jan Koopman & André Lucas, 2013. "Generalized Autoregressive Score Models With Applications," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 28(5), pages 777-795, August.
    31. Bollerslev, Tim & Todorov, Viktor, 2014. "Time-varying jump tails," Journal of Econometrics, Elsevier, vol. 183(2), pages 168-180.
    32. Astrid Ayala & Szabolcs Blazsek, 2019. "Score-driven currency exchange rate seasonality as applied to the Guatemalan Quetzal/US Dollar," SERIEs: Journal of the Spanish Economic Association, Springer;Spanish Economic Association, vol. 10(1), pages 65-92, March.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Keywords

    Dynamic conditional score (DCS) models;

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
    • C58 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Financial Econometrics

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cte:werepe:28133. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Ana Poveda). General contact details of provider: http://www.eco.uc3m.es/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.