IDEAS home Printed from https://ideas.repec.org/a/taf/eurjfi/v24y2018i18p1861-1884.html
   My bibliography  Save this article

Score-driven copula models for portfolios of two risky assets

Author

Listed:
  • Astrid Ayala
  • Szabolcs Blazsek

Abstract

The precise measurement of the association between asset returns is important for financial investors and risk managers. In this paper, we focus on a recent class of association models: Dynamic Conditional Score (DCS) copula models. Our contributions are the following: (i) We compare the statistical performance of several DCS copulas for several portfolios. We study the Clayton, rotated Clayton, Frank, Gaussian, Gumbel, rotated Gumbel, Plackett and Student's t copulas. We find that the DCS model with the Student's t copula is the most parsimonious model. (ii) We demonstrate that the copula score function discounts extreme observations. (iii) We jointly estimate the marginal distributions and the copula, by using the Maximum Likelihood method. We use DCS models for mean, volatility and association of asset returns. (iv) We estimate robust DCS copula models, for which the probability of a zero return observation is not necessarily zero. (v) We compare different patterns of association in different regions of the distribution for different DCS copulas, by using density contour plots and Monte Carlo (MC) experiments. (vi) We undertake a portfolio performance study with the estimation and backtesting of MC Value-at-Risk for the DCS model with the Student's t copula.

Suggested Citation

  • Astrid Ayala & Szabolcs Blazsek, 2018. "Score-driven copula models for portfolios of two risky assets," The European Journal of Finance, Taylor & Francis Journals, vol. 24(18), pages 1861-1884, December.
  • Handle: RePEc:taf:eurjfi:v:24:y:2018:i:18:p:1861-1884
    DOI: 10.1080/1351847X.2018.1464488
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/1351847X.2018.1464488
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/1351847X.2018.1464488?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alanya-Beltran Willy, 2023. "Modelling volatility dependence with score copula models," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 27(5), pages 649-668, December.
    2. Ayala, Astrid & Blazsek, Szabolcs, 2019. "Score-driven time series models with dynamic shape : an application to the Standard & Poor's 500 index," UC3M Working papers. Economics 28133, Universidad Carlos III de Madrid. Departamento de Economía.
    3. Blazsek, Szabolcs & Licht, Adrian, 2018. "Seasonality Detection in Small Samples using Score-Driven Nonlinear Multivariate Dynamic Location Models," UC3M Working papers. Economics 27483, Universidad Carlos III de Madrid. Departamento de Economía.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:eurjfi:v:24:y:2018:i:18:p:1861-1884. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/REJF20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.