IDEAS home Printed from https://ideas.repec.org/p/com/wpaper/004.html
   My bibliography  Save this paper

Coevolutionary Genetic Algorithms for Establishing Nash Equilibrium in Symmetric Cournot Games

Author

Listed:
  • Mattheos Protopapas
  • Francesco Battaglia
  • Elias Kosmatopoulo

Abstract

We use co-evolutionary genetic algorithms to model the players' learning process in several Cournot models, and evaluate them in terms of their convergence to the Nash Equilibrium. The \social-learning" versions of the two co-evolutionary algorithms we introduce, establish Nash Equilibrium in those models, in contrast to the \individual learning" versions which, as we see here, do not imply the convergence of the players' strategies to the Nash outcome. When players use \canonical co-evolutionary genetic algorithms" as learning algorithms, the process of the game is an ergodic Markov Chain, and therefore we analyze simulation results using the relevant methodology, to find that in the \social" case, states leading to NE play are highly frequent at the stationary distribution of the chain, in contrast to the \individual learning" case, when NE is not reached at all in our simulations; to ftnd that the expected Hamming distance of the states at the limiting distribution from the \NE state" is significantly smaller in the \social" than in the \individual learning case"; to estimate the expected time that the \social" algorithms need to get to the \NE state" and verify their robustness and finally to show that a large fraction of the games played are indeed at the Nash Equilibrium.

Suggested Citation

  • Mattheos Protopapas & Francesco Battaglia & Elias Kosmatopoulo, 2008. "Coevolutionary Genetic Algorithms for Establishing Nash Equilibrium in Symmetric Cournot Games," Working Papers 004, COMISEF.
  • Handle: RePEc:com:wpaper:004
    as

    Download full text from publisher

    File URL: http://comisef.eu/files/wps004.pdf
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. T. Vallée & Murat Yildizoglu, 2007. "Convergence in Finite Cournot Oligopoly with Social and Individual Learning," Post-Print hal-00293948, HAL.
    2. Arifovic, Jasmina, 1994. "Genetic algorithm learning and the cobweb model," Journal of Economic Dynamics and Control, Elsevier, vol. 18(1), pages 3-28, January.
    3. Michael Kopel & Herbert Dawid, 1998. "On economic applications of the genetic algorithm: a model of the cobweb type," Journal of Evolutionary Economics, Springer, vol. 8(3), pages 297-315.
    4. Dubey, Pradeep & Haimanko, Ori & Zapechelnyuk, Andriy, 2006. "Strategic complements and substitutes, and potential games," Games and Economic Behavior, Elsevier, vol. 54(1), pages 77-94, January.
    5. Carlos Alós-Ferrer & Ana Ania, 2005. "The evolutionary stability of perfectly competitive behavior," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 26(3), pages 497-516, October.
    6. Riechmann, Thomas, 2001. "Genetic algorithm learning and evolutionary games," Journal of Economic Dynamics and Control, Elsevier, vol. 25(6-7), pages 1019-1037, June.
    7. Vriend, Nicolaas J., 2000. "An illustration of the essential difference between individual and social learning, and its consequences for computational analyses," Journal of Economic Dynamics and Control, Elsevier, vol. 24(1), pages 1-19, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Johannes Paha, 2010. "Simulation and Prosecution of a Cartel with Endogenous Cartel Formation," MAGKS Papers on Economics 201007, Philipps-Universität Marburg, Faculty of Business Administration and Economics, Department of Economics (Volkswirtschaftliche Abteilung).

    More about this item

    Keywords

    Genetic Algorithms; Cournot oligopoly; Evolutionary Game Theory; Nash Equilibrium;

    JEL classification:

    • C73 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Stochastic and Dynamic Games; Evolutionary Games

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:com:wpaper:004. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Anil Khuman). General contact details of provider: http://www.comisef.eu .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.