IDEAS home Printed from https://ideas.repec.org/p/sce/scecf9/613.html
   My bibliography  Save this paper

Evolving Traders and the Faculty of the Business School: A New Architecture of the Artificial Stock Market

Author

Listed:
  • Shu-Heng Chen

    () (National Chengchi University)

  • Chia-Hsuan Yeh

    () (National Chengchi University)

Abstract

In this paper, we propose a new architecture to study artificial stock markets. This architecture rests on a mechanism called "school" which is a procedure for mapping the phenotype to the genotype or, in plain English, to uncover the secret of success. We propose an agent-based model of school, considering it as an evolving population driven by single-population GP (SGP). The architecture also takes into consideration traders' search behaviour. By simulated annealing, the traders' search densities can be connected to psychological factors such as peer pressure or to economic factors such as the standard of living. This market architecture is then implemented in a standard artificial stock market. Our econometric study of the resultant artificial time series gives evidence that the return series is independently and identically distributed (iid) and hence supports the efficient market hypothesis (EMH). What is interesting, though, is that this iid series is generated by traders who do not believe in the EMH at all. In fact, our study indicates that many of our traders are often able to find useful signals from business school, even though these signals are short-lived.

Suggested Citation

  • Shu-Heng Chen & Chia-Hsuan Yeh, 1999. "Evolving Traders and the Faculty of the Business School: A New Architecture of the Artificial Stock Market," Computing in Economics and Finance 1999 613, Society for Computational Economics.
  • Handle: RePEc:sce:scecf9:613
    as

    Download full text from publisher

    File URL: http://fmwww.bc.edu/cef99/papers/ChenYeh.pdf
    File Function: main text
    Download Restriction: no

    References listed on IDEAS

    as
    1. Arifovic, Jasmina, 1994. "Genetic algorithm learning and the cobweb model," Journal of Economic Dynamics and Control, Elsevier, vol. 18(1), pages 3-28, January.
    2. Arthur, W.B. & Holland, J.H. & LeBaron, B. & Palmer, R. & Tayler, P., 1996. "Asset Pricing Under Endogenous Expectations in an Artificial Stock Market," Working papers 9625, Wisconsin Madison - Social Systems.
    3. D. Heymann, R. P. J. Perazzo, & Andres Schuschny, "undated". "Learning and Contagion Effects in Trasitions Between Regimes: A Schematic Model of Bank Runs," Computing in Economics and Finance 1997 17, Society for Computational Economics.
    4. Bullard, James & Duffy, John, 1999. "Using Genetic Algorithms to Model the Evolution of Heterogeneous Beliefs," Computational Economics, Springer;Society for Computational Economics, vol. 13(1), pages 41-60, February.
    5. Arifovic, Jasmina, 1995. "Genetic algorithms and inflationary economies," Journal of Monetary Economics, Elsevier, vol. 36(1), pages 219-243, August.
    6. Robert Axelrod, 1997. "Advancing the Art of Simulation in the Social Sciences," Working Papers 97-05-048, Santa Fe Institute.
    7. Lux, T. & M. Marchesi, "undated". "Scaling and Criticality in a Stochastic Multi-Agent Model of a Financial Market," Discussion Paper Serie B 438, University of Bonn, Germany, revised Jul 1998.
    8. Pagan, Adrian, 1996. "The econometrics of financial markets," Journal of Empirical Finance, Elsevier, vol. 3(1), pages 15-102, May.
    9. Holland, John H & Miller, John H, 1991. "Artificial Adaptive Agents in Economic Theory," American Economic Review, American Economic Association, vol. 81(2), pages 365-371, May.
    10. Arifovic, Jasmina, 1996. "The Behavior of the Exchange Rate in the Genetic Algorithm and Experimental Economies," Journal of Political Economy, University of Chicago Press, vol. 104(3), pages 510-541, June.
    11. Miller, John H., 1996. "The coevolution of automata in the repeated Prisoner's Dilemma," Journal of Economic Behavior & Organization, Elsevier, vol. 29(1), pages 87-112, January.
    12. Tony Curzon Price, 1997. "Using co-evolutionary programming to simulate strategic behaviour in markets," Journal of Evolutionary Economics, Springer, vol. 7(3), pages 219-254.
    13. Dickey, David A & Fuller, Wayne A, 1981. "Likelihood Ratio Statistics for Autoregressive Time Series with a Unit Root," Econometrica, Econometric Society, vol. 49(4), pages 1057-1072, June.
    14. James B. Bullard & John Duffy, 1995. "On learning and the stability of cycles," Working Papers 1995-006, Federal Reserve Bank of St. Louis.
    15. Bullard, James & Duffy, John, 1998. "A model of learning and emulation with artificial adaptive agents," Journal of Economic Dynamics and Control, Elsevier, vol. 22(2), pages 179-207, February.
    16. Lux, Thomas, 1998. "The socio-economic dynamics of speculative markets: interacting agents, chaos, and the fat tails of return distributions," Journal of Economic Behavior & Organization, Elsevier, vol. 33(2), pages 143-165, January.
    17. Arifovic, Jasmina & Bullard, James & Duffy, John, 1997. "The Transition from Stagnation to Growth: An Adaptive Learning Approach," Journal of Economic Growth, Springer, vol. 2(2), pages 185-209, July.
    18. Vriend, Nicolaas J., 2000. "An illustration of the essential difference between individual and social learning, and its consequences for computational analyses," Journal of Economic Dynamics and Control, Elsevier, vol. 24(1), pages 1-19, January.
    19. Chen, Shu-Heng & Lux, Thomas & Marchesi, Michele, 2001. "Testing for non-linear structure in an artificial financial market," Journal of Economic Behavior & Organization, Elsevier, vol. 46(3), pages 327-342, November.
    20. Lux, Thomas, 1995. "Herd Behaviour, Bubbles and Crashes," Economic Journal, Royal Economic Society, vol. 105(431), pages 881-896, July.
    21. repec:cup:macdyn:v:2:y:1998:i:1:p:22-48 is not listed on IDEAS
    22. Bullard, James & Duffy, John, 1998. "Learning And The Stability Of Cycles," Macroeconomic Dynamics, Cambridge University Press, vol. 2(01), pages 22-48, March.
    Full references (including those not matched with items on IDEAS)

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sce:scecf9:613. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Christopher F. Baum). General contact details of provider: http://edirc.repec.org/data/sceeeea.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.