IDEAS home Printed from https://ideas.repec.org/p/cns/cnscwp/201707.html
   My bibliography  Save this paper

Clustering Space-Time Series: A Flexible STAR Approach

Author

Listed:
  • E. Otranto
  • M. Mucciardi

Abstract

The STAR model is widely used to represent the dynamics of a certain variable recorded at several locations at the same time. Its advantages are often discussed in terms of parsimony with respect to space-time VAR structures because it considers a single coefficient for each time and spatial lag. This hypothesis can be very strong; we add a certain degree of flexibility to the STAR model, providing the possibility for coefficients to vary in groups of locations. The new class of models is compared to the classical STAR and the space-time VAR by simulations and an application.

Suggested Citation

  • E. Otranto & M. Mucciardi, 2017. "Clustering Space-Time Series: A Flexible STAR Approach," Working Paper CRENoS 201707, Centre for North South Economic Research, University of Cagliari and Sassari, Sardinia.
  • Handle: RePEc:cns:cnscwp:201707
    as

    Download full text from publisher

    File URL: https://crenos.unica.it/crenos/node/7082
    Download Restriction: no

    File URL: https://crenos.unica.it/crenos/sites/default/files/wp-17-07.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Steece, Bert & Wood, Steven, 1985. "A Test for the Equivalence of k ARMA Models," Empirical Economics, Springer, vol. 1(1), pages 1-11.
    2. Michele Aquaro & Natalia Bailey & M. Hashem Pesaran, 2015. "Quasi Maximum Likelihood Estimation of Spatial Models with Heterogeneous Coefficients," Working Papers 749, Queen Mary University of London, School of Economics and Finance.
    3. Lawrence Hubert & Phipps Arabie, 1985. "Comparing partitions," Journal of Classification, Springer;The Classification Society, vol. 2(1), pages 193-218, December.
    4. Otranto, Edoardo, 2010. "Identifying financial time series with similar dynamic conditional correlation," Computational Statistics & Data Analysis, Elsevier, vol. 54(1), pages 1-15, January.
    5. Massimo Mucciardi & Pietro Bertuccelli, 2012. "The impact of the weight matrix on the local indicators of spatial association: an application to per-capita value added in Italy," International Journal of Trade and Global Markets, Inderscience Enterprises Ltd, vol. 5(2), pages 133-141.
    6. Pinkse, Joris & Slade, Margaret E., 1998. "Contracting in space: An application of spatial statistics to discrete-choice models," Journal of Econometrics, Elsevier, vol. 85(1), pages 125-154, July.
    7. F Stetzer, 1982. "Specifying Weights in Spatial Forecasting Models: The Results of Some Experiments," Environment and Planning A, , vol. 14(5), pages 571-584, May.
    8. Edoardo Otranto & Massimo Mucciardi & Pietro Bertuccelli, 2016. "Spatial effects in dynamic conditional correlations," Journal of Applied Statistics, Taylor & Francis Journals, vol. 43(4), pages 604-626, March.
    9. Fruhwirth-Schnatter, Sylvia & Kaufmann, Sylvia, 2008. "Model-Based Clustering of Multiple Time Series," Journal of Business & Economic Statistics, American Statistical Association, vol. 26, pages 78-89, January.
    10. Otranto, Edoardo, 2008. "Clustering heteroskedastic time series by model-based procedures," Computational Statistics & Data Analysis, Elsevier, vol. 52(10), pages 4685-4698, June.
    11. LeSage, James P. & Chih, Yao-Yu, 2016. "Interpreting heterogeneous coefficient spatial autoregressive panel models," Economics Letters, Elsevier, vol. 142(C), pages 1-5.
    12. Giacomini, Raffaella & Granger, Clive W. J., 2004. "Aggregation of space-time processes," Journal of Econometrics, Elsevier, vol. 118(1-2), pages 7-26.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Edoardo Otranto & Massimo Mucciardi, 2019. "Clustering space-time series: FSTAR as a flexible STAR approach," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 13(1), pages 175-199, March.
    2. M. Mucciardi & E. Otranto, 2016. "A Flexible Specification of Space–Time AutoRegressive Models," Working Paper CRENoS 201608, Centre for North South Economic Research, University of Cagliari and Sassari, Sardinia.
    3. Otranto, Edoardo, 2010. "Identifying financial time series with similar dynamic conditional correlation," Computational Statistics & Data Analysis, Elsevier, vol. 54(1), pages 1-15, January.
    4. Edoardo Otranto & Romana Gargano, 2015. "Financial clustering in presence of dominant markets," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 9(3), pages 315-339, September.
    5. Giacomini, Raffaella & Granger, Clive W. J., 2004. "Aggregation of space-time processes," Journal of Econometrics, Elsevier, vol. 118(1-2), pages 7-26.
    6. Gu, Huaying & Liu, Zhixue & Weng, Yingliang, 2017. "Time-varying correlations in global real estate markets: A multivariate GARCH with spatial effects approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 471(C), pages 460-472.
    7. Aielli, Gian Piero & Caporin, Massimiliano, 2014. "Variance clustering improved dynamic conditional correlation MGARCH estimators," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 556-576.
    8. Niko Hauzenberger & Michael Pfarrhofer, 2021. "Bayesian State‐Space Modeling for Analyzing Heterogeneous Network Effects of US Monetary Policy," Scandinavian Journal of Economics, Wiley Blackwell, vol. 123(4), pages 1261-1291, October.
    9. Cornwall, Gary J. & Parent, Olivier, 2017. "Embracing heterogeneity: the spatial autoregressive mixture model," Regional Science and Urban Economics, Elsevier, vol. 64(C), pages 148-161.
    10. Tyler Roick & Dimitris Karlis & Paul D. McNicholas, 2021. "Clustering discrete-valued time series," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 15(1), pages 209-229, March.
    11. De Angelis, Luca & Dias, José G., 2014. "Mining categorical sequences from data using a hybrid clustering method," European Journal of Operational Research, Elsevier, vol. 234(3), pages 720-730.
    12. Kelejian, Harry H. & Prucha, Ingmar R., 2004. "Estimation of simultaneous systems of spatially interrelated cross sectional equations," Journal of Econometrics, Elsevier, vol. 118(1-2), pages 27-50.
    13. Alberto Gude & Inmaculada Álvarez & Luis Orea, 2018. "Heterogeneous spillovers among Spanish provinces: a generalized spatial stochastic frontier model," Journal of Productivity Analysis, Springer, vol. 50(3), pages 155-173, December.
    14. G.M. Gallo & D. Lacava & E. Otranto, 2023. "Volatility jumps and the classification of monetary policy announcements," Working Paper CRENoS 202306, Centre for North South Economic Research, University of Cagliari and Sassari, Sardinia.
    15. Di Iorio, Francesca & Triacca, Umberto, 2013. "Testing for Granger non-causality using the autoregressive metric," Economic Modelling, Elsevier, vol. 33(C), pages 120-125.
    16. Corinne Autant-Bernard & James P. LeSage, 2019. "A heterogeneous coefficient approach to the knowledge production function," Spatial Economic Analysis, Taylor & Francis Journals, vol. 14(2), pages 196-218, April.
    17. Michele Aquaro & Natalia Bailey & M. Hashem Pesaran, 2021. "Estimation and inference for spatial models with heterogeneous coefficients: An application to US house prices," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 36(1), pages 18-44, January.
    18. E. Otranto, 2011. "Classification of Volatility in Presence of Changes in Model Parameters," Working Paper CRENoS 201113, Centre for North South Economic Research, University of Cagliari and Sassari, Sardinia.
    19. Luca De Angelis, 2013. "Latent class models for financial data analysis: some statistical developments," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 22(2), pages 227-242, June.
    20. Bauwens, Luc & Otranto, Edoardo, 2020. "Nonlinearities and regimes in conditional correlations with different dynamics," Journal of Econometrics, Elsevier, vol. 217(2), pages 496-522.

    More about this item

    Keywords

    clustering; forecasting; space–time models; spatial weight matrix;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cns:cnscwp:201707. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CRENoS (email available below). General contact details of provider: https://edirc.repec.org/data/crenoit.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.