IDEAS home Printed from https://ideas.repec.org/p/cmu/gsiawp/1217885373.html
   My bibliography  Save this paper

On Correlation Effects and Default Clustering in Credit Models

Author

Listed:
  • Antje Berndt
  • Peter Ritchken
  • Zhiqiang Sun

Abstract

We establish Markovian models in the Heath, Jarrow and Morton paradigm where the credit spreads curves of multiple firms and the term structure of interest rates can be represented analytically at any point in time in terms of a finite number of state variables. The models make no restrictions on the correlation structure between interest rates and credit spreads. In addition to diffusive and jump-induced default correlations, default events can impact credit spreads of surviving firms. This feature allows a greater clustering of defaults. Numerical implementations highlight the importance of taking interest rate-credit spread correlations, credit-spread impact factors and the full credit spread curve information into account when building a unified model framework that prices any credit derivative.

Suggested Citation

  • Antje Berndt & Peter Ritchken & Zhiqiang Sun, "undated". "On Correlation Effects and Default Clustering in Credit Models," GSIA Working Papers 2008-E36, Carnegie Mellon University, Tepper School of Business.
  • Handle: RePEc:cmu:gsiawp:1217885373
    as

    Download full text from publisher

    File URL: https://student-3k.tepper.cmu.edu/gsiadoc/wp/2008-E36.pdf
    Download Restriction: no

    References listed on IDEAS

    as
    1. Narasimhan Jegadeesh & George Pennacchi, 1996. "The behavior of interest rates implied by the term structure of Eurodollar future," Proceedings, Federal Reserve Bank of Cleveland, pages 426-451.
    2. Rong Fan & Anurag Gupta & Peter Ritchken, 2003. "Hedging in the Possible Presence of Unspanned Stochastic Volatility: Evidence from Swaption Markets," Journal of Finance, American Finance Association, vol. 58(5), pages 2219-2248, October.
    3. Vasicek, Oldrich, 1977. "An equilibrium characterization of the term structure," Journal of Financial Economics, Elsevier, vol. 5(2), pages 177-188, November.
    4. Tomas Björk & Bent Jesper Christensen, 1999. "Interest Rate Dynamics and Consistent Forward Rate Curves," Mathematical Finance, Wiley Blackwell, pages 323-348.
    5. Duffee, Gregory R, 1999. "Estimating the Price of Default Risk," Review of Financial Studies, Society for Financial Studies, vol. 12(1), pages 197-226.
    6. Vasicek, Oldrich Alfonso, 1977. "Abstract: An Equilibrium Characterization of the Term Structure," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 12(04), pages 627-627, November.
    7. Merton, Robert C, 1974. "On the Pricing of Corporate Debt: The Risk Structure of Interest Rates," Journal of Finance, American Finance Association, vol. 29(2), pages 449-470, May.
    8. Fan Yu, 2007. "Correlated Defaults In Intensity-Based Models," Mathematical Finance, Wiley Blackwell, vol. 17(2), pages 155-173.
    9. R. Bhar & C. Chiarella, 1997. "Transformation of Heath?Jarrow?Morton models to Markovian systems," The European Journal of Finance, Taylor & Francis Journals, vol. 3(1), pages 1-26.
    10. Robert A. Jarrow & Fan Yu, 2008. "Counterparty Risk and the Pricing of Defaultable Securities," World Scientific Book Chapters,in: Financial Derivatives Pricing Selected Works of Robert Jarrow, chapter 20, pages 481-515 World Scientific Publishing Co. Pte. Ltd..
    11. Joost Driessen, 2005. "Is Default Event Risk Priced in Corporate Bonds?," Review of Financial Studies, Society for Financial Studies, vol. 18(1), pages 165-195.
    12. Tomas Björk & Lars Svensson, 2001. "On the Existence of Finite-Dimensional Realizations for Nonlinear Forward Rate Models," Mathematical Finance, Wiley Blackwell, vol. 11(2), pages 205-243.
    13. Björk, Tomas & Svensson, Lars, 1999. "On the Existence of Finite Dimensional Realizations for Nonlinear Forward Rate Models," SSE/EFI Working Paper Series in Economics and Finance 338, Stockholm School of Economics.
    14. Robert A. Jarrow & David Lando & Stuart M. Turnbull, 2008. "A Markov Model for the Term Structure of Credit Risk Spreads," World Scientific Book Chapters,in: Financial Derivatives Pricing Selected Works of Robert Jarrow, chapter 18, pages 411-453 World Scientific Publishing Co. Pte. Ltd..
    15. Jorion, Philippe & Zhang, Gaiyan, 2007. "Good and bad credit contagion: Evidence from credit default swaps," Journal of Financial Economics, Elsevier, vol. 84(3), pages 860-883, June.
    16. Gurkaynak, Refet S. & Sack, Brian & Wright, Jonathan H., 2007. "The U.S. Treasury yield curve: 1961 to the present," Journal of Monetary Economics, Elsevier, vol. 54(8), pages 2291-2304, November.
    17. Inui, Koji & Kijima, Masaaki, 1998. "A Markovian Framework in Multi-Factor Heath-Jarrow-Morton Models," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 33(03), pages 423-440, September.
    18. David Heath & Robert Jarrow & Andrew Morton, 2008. "Bond Pricing And The Term Structure Of Interest Rates: A New Methodology For Contingent Claims Valuation," World Scientific Book Chapters,in: Financial Derivatives Pricing Selected Works of Robert Jarrow, chapter 13, pages 277-305 World Scientific Publishing Co. Pte. Ltd..
    19. Carl Chiarella & Oh-Kang Kwon, 1999. "Classes of Interest Rate Models Under the HJM Framework," Research Paper Series 13, Quantitative Finance Research Centre, University of Technology, Sydney.
    20. M. Davis & V. Lo, 2001. "Infectious defaults," Quantitative Finance, Taylor & Francis Journals, vol. 1(4), pages 382-387.
    21. Longstaff, Francis A & Schwartz, Eduardo S, 1995. " A Simple Approach to Valuing Risky Fixed and Floating Rate Debt," Journal of Finance, American Finance Association, vol. 50(3), pages 789-819, July.
    22. Claudia La Chioma & Benedetto Piccoli, 2007. "Heath-Jarrow-Morton Interest Rate Dynamics And Approximately Consistent Forward Rate Curves," Mathematical Finance, Wiley Blackwell, vol. 17(3), pages 427-447.
    23. P. Collin-Dufresne & R. Goldstein & J. Hugonnier, 2004. "A General Formula for Valuing Defaultable Securities," Econometrica, Econometric Society, vol. 72(5), pages 1377-1407, September.
    24. Bliss, Robert R & Ritchken, Peter, 1996. "Empirical Tests of Two State-Variable Heath-Jarrow-Morton Models," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 28(3), pages 452-476, August.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cmu:gsiawp:1217885373. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Steve Spear). General contact details of provider: http://www.tepper.cmu.edu/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.