IDEAS home Printed from https://ideas.repec.org/p/cdl/uctcwp/qt0rz778v6.html
   My bibliography  Save this paper

Development of an estimation procedure for an activity-based travel demand model

Author

Listed:
  • Recker, Will W
  • Duan, J.
  • Wang, H.

Abstract

In this paper, we implement an estimation procedure for a particular mathematical programming activity-based model in order to estimate the relative importance of factors associated with spatial and temporal interrelationships among the out-of-home activities that motivate a household’s need or desire to travel. The method uses a genetic algorithm to estimate coefficient values of the utility function, based on a particular multidimensional sequence alignment method to deal with the nominal, discrete, attributes of the activity/travel pattern (e.g., which household member performs which activity, which vehicle is used, sequencing of activities), and a time sequence alignment method to handle temporal attributes of the activity pattern (e.g., starting and ending time of each activity and/or travel). The estimation procedure is tested on data drawn from a well-know activity/travel survey.

Suggested Citation

  • Recker, Will W & Duan, J. & Wang, H., 2008. "Development of an estimation procedure for an activity-based travel demand model," University of California Transportation Center, Working Papers qt0rz778v6, University of California Transportation Center.
  • Handle: RePEc:cdl:uctcwp:qt0rz778v6
    as

    Download full text from publisher

    File URL: https://www.escholarship.org/uc/item/0rz778v6.pdf;origin=repeccitec
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Recker, W. W. & Chen, C. & McNally, M. G., 2001. "Measuring the impact of efficient household travel decisions on potential travel time savings and accessibility gains," Transportation Research Part A: Policy and Practice, Elsevier, vol. 35(4), pages 339-369, May.
    2. Recker, W. W., 2001. "A bridge between travel demand modeling and activity-based travel analysis," Transportation Research Part B: Methodological, Elsevier, vol. 35(5), pages 481-506, June.
    3. Joh, Chang-Hyeon & Arentze, Theo & Hofman, Frank & Timmermans, Harry, 2002. "Activity pattern similarity: a multidimensional sequence alignment method," Transportation Research Part B: Methodological, Elsevier, vol. 36(5), pages 385-403, June.
    4. Recker, W. W., 1995. "The household activity pattern problem: General formulation and solution," Transportation Research Part B: Methodological, Elsevier, vol. 29(1), pages 61-77, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Blom Västberg, Oskar & Karlström, Anders & Jonsson, Daniel & Sundberg, Marcus, 2016. "Including time in a travel demand model using dynamic discrete choice," MPRA Paper 75336, University Library of Munich, Germany, revised 11 Nov 2016.
    2. Xu, Zhiheng & Kang, Jee Eun & Chen, Roger, 2018. "A random utility based estimation framework for the household activity pattern problem," Transportation Research Part A: Policy and Practice, Elsevier, vol. 114(PB), pages 321-337.
    3. Oskar Blom Västberg & Anders Karlström & Daniel Jonsson & Marcus Sundberg, 2020. "A Dynamic Discrete Choice Activity-Based Travel Demand Model," Transportation Science, INFORMS, vol. 54(1), pages 21-41, January.
    4. Yashar Khayati & Jee Eun Kang & Mark Karwan & Chase Murray, 2021. "Household Activity Pattern Problem with Autonomous Vehicles," Networks and Spatial Economics, Springer, vol. 21(3), pages 609-637, September.
    5. Jee Eun Kang & Will Recker, 2015. "Strategic Hydrogen Refueling Station Locations with Scheduling and Routing Considerations of Individual Vehicles," Transportation Science, INFORMS, vol. 49(4), pages 767-783, November.
    6. Kang, Jee Eun & Chow, Joseph Y.J. & Recker, Will W., 2013. "On activity-based network design problems," Transportation Research Part B: Methodological, Elsevier, vol. 57(C), pages 398-418.
    7. Chow, Joseph Y.J. & Recker, Will W., 2012. "Inverse optimization with endogenous arrival time constraints to calibrate the household activity pattern problem," Transportation Research Part B: Methodological, Elsevier, vol. 46(3), pages 463-479.
    8. Gan, Li Ping & Recker, Will, 2008. "A mathematical programming formulation of the household activity rescheduling problem," Transportation Research Part B: Methodological, Elsevier, vol. 42(6), pages 571-606, July.
    9. Abdul Rawoof Pinjari & Chandra R. Bhat, 2011. "Activity-based Travel Demand Analysis," Chapters, in: André de Palma & Robin Lindsey & Emile Quinet & Roger Vickerman (ed.), A Handbook of Transport Economics, chapter 10, Edward Elgar Publishing.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gan, Li Ping & Recker, Will, 2008. "A mathematical programming formulation of the household activity rescheduling problem," Transportation Research Part B: Methodological, Elsevier, vol. 42(6), pages 571-606, July.
    2. Allahviranloo, Mahdieh & Recker, Will, 2013. "Daily activity pattern recognition by using support vector machines with multiple classes," Transportation Research Part B: Methodological, Elsevier, vol. 58(C), pages 16-43.
    3. Mahdieh Allahviranloo & Thomas Bonet & Jérémy Diez, 2021. "Introducing shared life experience metric in urban planning," Transportation, Springer, vol. 48(3), pages 1125-1148, June.
    4. Jee Eun Kang & Will Recker, 2015. "Strategic Hydrogen Refueling Station Locations with Scheduling and Routing Considerations of Individual Vehicles," Transportation Science, INFORMS, vol. 49(4), pages 767-783, November.
    5. Abdul Rawoof Pinjari & Chandra R. Bhat, 2011. "Activity-based Travel Demand Analysis," Chapters, in: André de Palma & Robin Lindsey & Emile Quinet & Roger Vickerman (ed.), A Handbook of Transport Economics, chapter 10, Edward Elgar Publishing.
    6. Chow, Joseph Y.J. & Recker, Will W., 2012. "Inverse optimization with endogenous arrival time constraints to calibrate the household activity pattern problem," Transportation Research Part B: Methodological, Elsevier, vol. 46(3), pages 463-479.
    7. He, Fang & Yin, Yafeng & Lawphongpanich, Siriphong, 2014. "Network equilibrium models with battery electric vehicles," Transportation Research Part B: Methodological, Elsevier, vol. 67(C), pages 306-319.
    8. Xie, Chi & Wang, Tong-Gen & Pu, Xiaoting & Karoonsoontawong, Ampol, 2017. "Path-constrained traffic assignment: Modeling and computing network impacts of stochastic range anxiety," Transportation Research Part B: Methodological, Elsevier, vol. 103(C), pages 136-157.
    9. Maruyama, Takuya & Sumalee, Agachai, 2007. "Efficiency and equity comparison of cordon- and area-based road pricing schemes using a trip-chain equilibrium model," Transportation Research Part A: Policy and Practice, Elsevier, vol. 41(7), pages 655-671, August.
    10. Li Ping Gan & Will Recker, 2013. "Stochastic Preplanned Household Activity Pattern Problem with Uncertain Activity Participation (SHAPP)," Transportation Science, INFORMS, vol. 47(3), pages 439-454, August.
    11. Ballis, Haris & Dimitriou, Loukas, 2020. "Revealing personal activities schedules from synthesizing multi-period origin-destination matrices," Transportation Research Part B: Methodological, Elsevier, vol. 139(C), pages 224-258.
    12. Xu, Zhiheng & Kang, Jee Eun & Chen, Roger, 2018. "A random utility based estimation framework for the household activity pattern problem," Transportation Research Part A: Policy and Practice, Elsevier, vol. 114(PB), pages 321-337.
    13. Kang, Jee Eun & Chow, Joseph Y.J. & Recker, Will W., 2013. "On activity-based network design problems," Transportation Research Part B: Methodological, Elsevier, vol. 57(C), pages 398-418.
    14. Tijs Neutens & Tim Schwanen & Frank Witlox & Philippe De Maeyer, 2010. "Equity of Urban Service Delivery: A Comparison of Different Accessibility Measures," Environment and Planning A, , vol. 42(7), pages 1613-1635, July.
    15. Jesus Gonzalez-Feliu & Aurélie Mercier, 2013. "A combined people-freight accessibility approach for urban retailing and leisure planning at strategic level," Post-Print halshs-00919537, HAL.
    16. Bowman, J. L. & Ben-Akiva, M. E., 2001. "Activity-based disaggregate travel demand model system with activity schedules," Transportation Research Part A: Policy and Practice, Elsevier, vol. 35(1), pages 1-28, January.
    17. Andre De Palma & Fay Dunkerley & Stef Proost, 2010. "Trip Chaining: Who Wins Who Loses?," Journal of Economics & Management Strategy, Wiley Blackwell, vol. 19(1), pages 223-258, March.
    18. Mohammad Hesam Hafezi & Lei Liu & Hugh Millward, 2019. "A time-use activity-pattern recognition model for activity-based travel demand modeling," Transportation, Springer, vol. 46(4), pages 1369-1394, August.
    19. Kockelman, Kara Maria, 2001. "A model for time- and budget-constrained activity demand analysis," Transportation Research Part B: Methodological, Elsevier, vol. 35(3), pages 255-269, March.
    20. Dong, Xiaojing & Ben-Akiva, Moshe E. & Bowman, John L. & Walker, Joan L., 2006. "Moving from trip-based to activity-based measures of accessibility," Transportation Research Part A: Policy and Practice, Elsevier, vol. 40(2), pages 163-180, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cdl:uctcwp:qt0rz778v6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Lisa Schiff (email available below). General contact details of provider: https://edirc.repec.org/data/itucbus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.