A random utility based estimation framework for the household activity pattern problem
Author
Abstract
Suggested Citation
DOI: 10.1016/j.tra.2018.01.036
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Bliemer, Michiel C.J. & Rose, John M., 2010. "Construction of experimental designs for mixed logit models allowing for correlation across choice observations," Transportation Research Part B: Methodological, Elsevier, vol. 44(6), pages 720-734, July.
- Lothlorien Redmond & Patricia Mokhtarian, 2001.
"The positive utility of the commute: modeling ideal commute time and relative desired commute amount,"
Transportation, Springer, vol. 28(2), pages 179-205, May.
- Redmond, Lothlorien S. & Mokhtarian, Patricia L., 2001. "The Positive Utility of the Commute: Modeling Ideal Commute Time and Relative Desired Commute Amount," University of California Transportation Center, Working Papers qt4mc291p2, University of California Transportation Center.
- Train,Kenneth E., 2009.
"Discrete Choice Methods with Simulation,"
Cambridge Books,
Cambridge University Press, number 9780521766555, September.
- Train,Kenneth E., 2009. "Discrete Choice Methods with Simulation," Cambridge Books, Cambridge University Press, number 9780521747387, October.
- Kenneth Train, 2003. "Discrete Choice Methods with Simulation," Online economics textbooks, SUNY-Oswego, Department of Economics, number emetr2.
- Gan, Li Ping & Recker, Will, 2008. "A mathematical programming formulation of the household activity rescheduling problem," Transportation Research Part B: Methodological, Elsevier, vol. 42(6), pages 571-606, July.
- Arentze, Theo A. & Timmermans, Harry J. P., 2004. "A learning-based transportation oriented simulation system," Transportation Research Part B: Methodological, Elsevier, vol. 38(7), pages 613-633, August.
- Bowman, J. L. & Ben-Akiva, M. E., 2001. "Activity-based disaggregate travel demand model system with activity schedules," Transportation Research Part A: Policy and Practice, Elsevier, vol. 35(1), pages 1-28, January.
- W C Wilson, 1998. "Activity Pattern Analysis by Means of Sequence-Alignment Methods," Environment and Planning A, , vol. 30(6), pages 1017-1038, June.
- Recker, Will W & Duan, J. & Wang, H., 2008. "Development of an estimation procedure for an activity-based travel demand model," University of California Transportation Center, Working Papers qt0rz778v6, University of California Transportation Center.
- David Charypar & Kai Nagel, 2005. "Generating complete all-day activity plans with genetic algorithms," Transportation, Springer, vol. 32(4), pages 369-397, July.
- Shlomo Bekhor & Moshe Ben-Akiva & M. Ramming, 2006. "Evaluation of choice set generation algorithms for route choice models," Annals of Operations Research, Springer, vol. 144(1), pages 235-247, April.
- Joh, Chang-Hyeon & Arentze, Theo & Hofman, Frank & Timmermans, Harry, 2002. "Activity pattern similarity: a multidimensional sequence alignment method," Transportation Research Part B: Methodological, Elsevier, vol. 36(5), pages 385-403, June.
- Recker, W. W., 1995. "The household activity pattern problem: General formulation and solution," Transportation Research Part B: Methodological, Elsevier, vol. 29(1), pages 61-77, February.
- Chow, Joseph Y.J. & Recker, Will W., 2012. "Inverse optimization with endogenous arrival time constraints to calibrate the household activity pattern problem," Transportation Research Part B: Methodological, Elsevier, vol. 46(3), pages 463-479.
- Abdul Rawoof Pinjari & Chandra R. Bhat, 2011. "Activity-based Travel Demand Analysis," Chapters, in: André de Palma & Robin Lindsey & Emile Quinet & Roger Vickerman (ed.), A Handbook of Transport Economics, chapter 10, Edward Elgar Publishing.
- Li Ping Gan & Will Recker, 2013. "Stochastic Preplanned Household Activity Pattern Problem with Uncertain Activity Participation (SHAPP)," Transportation Science, INFORMS, vol. 47(3), pages 439-454, August.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Usman Ahmed & Ana Tsui Moreno & Rolf Moeckel, 2021. "Microscopic activity sequence generation: a multiple correspondence analysis to explain travel behavior based on socio-demographic person attributes," Transportation, Springer, vol. 48(3), pages 1481-1502, June.
- Weijia (Vivian) Li & Kara M. Kockelman, 2022. "How does machine learning compare to conventional econometrics for transport data sets? A test of ML versus MLE," Growth and Change, Wiley Blackwell, vol. 53(1), pages 342-376, March.
- Usman Ahmed & Ana Tsui Moreno & Rolf Moeckel, 0. "Microscopic activity sequence generation: a multiple correspondence analysis to explain travel behavior based on socio-demographic person attributes," Transportation, Springer, vol. 0, pages 1-22.
- Yashar Khayati & Jee Eun Kang & Mark Karwan & Chase Murray, 2021. "Household Activity Pattern Problem with Autonomous Vehicles," Networks and Spatial Economics, Springer, vol. 21(3), pages 609-637, September.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Abdul Rawoof Pinjari & Chandra R. Bhat, 2011. "Activity-based Travel Demand Analysis," Chapters, in: André de Palma & Robin Lindsey & Emile Quinet & Roger Vickerman (ed.), A Handbook of Transport Economics, chapter 10, Edward Elgar Publishing.
- Thibaut Dubernet & Kay Axhausen, 2015. "Implementing a household joint activity-travel multi- agent simulation tool: first results," Transportation, Springer, vol. 42(5), pages 753-769, September.
- Vo, Khoa D. & Lam, William H.K. & Chen, Anthony & Shao, Hu, 2020. "A household optimum utility approach for modeling joint activity-travel choices in congested road networks," Transportation Research Part B: Methodological, Elsevier, vol. 134(C), pages 93-125.
- Ren, Xiyuan & Chow, Joseph Y.J., 2022. "A random-utility-consistent machine learning method to estimate agents’ joint activity scheduling choice from a ubiquitous data set," Transportation Research Part B: Methodological, Elsevier, vol. 166(C), pages 396-418.
- Kang, Jee Eun & Chow, Joseph Y.J. & Recker, Will W., 2013. "On activity-based network design problems," Transportation Research Part B: Methodological, Elsevier, vol. 57(C), pages 398-418.
- Liu, Xintao & Yan, Wai Yeung & Chow, Joseph Y.J., 2015. "Time-geographic relationships between vector fields of activity patterns and transport systems," Journal of Transport Geography, Elsevier, vol. 42(C), pages 22-33.
- Jee Eun Kang & Will Recker, 2015. "Strategic Hydrogen Refueling Station Locations with Scheduling and Routing Considerations of Individual Vehicles," Transportation Science, INFORMS, vol. 49(4), pages 767-783, November.
- Yashar Khayati & Jee Eun Kang & Mark Karwan & Chase Murray, 2021. "Household Activity Pattern Problem with Autonomous Vehicles," Networks and Spatial Economics, Springer, vol. 21(3), pages 609-637, September.
- Arentze, Theo A. & Ettema, Dick & Timmermans, Harry J.P., 2011. "Estimating a model of dynamic activity generation based on one-day observations: Method and results," Transportation Research Part B: Methodological, Elsevier, vol. 45(2), pages 447-460, February.
- Gan, Li Ping & Recker, Will, 2008. "A mathematical programming formulation of the household activity rescheduling problem," Transportation Research Part B: Methodological, Elsevier, vol. 42(6), pages 571-606, July.
- Staffan Algers & Jonas Eliasson & Lars-Göran Mattsson, 2005. "Is it time to use activity-based urban transport models? A discussion of planning needs and modelling possibilities," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 39(4), pages 767-789, December.
- Liu, Peng & Liao, Feixiong & Tian, Qiong & Huang, Hai-Jun & Timmermans, Harry, 2020. "Day-to-day needs-based activity-travel dynamics and equilibria in multi-state supernetworks," Transportation Research Part B: Methodological, Elsevier, vol. 132(C), pages 208-227.
- Dimitrios Rizopoulos & Domokos Esztergár-Kiss, 2023. "Heuristic time-dependent personal scheduling problem with electric vehicles," Transportation, Springer, vol. 50(5), pages 2009-2048, October.
- Mahmoud Javanmardi & Mehran Fasihozaman Langerudi & Ramin Shabanpour & Abolfazl Mohammadian, 2016. "An optimization approach to resolve activity scheduling conflicts in ADAPTS activity-based model," Transportation, Springer, vol. 43(6), pages 1023-1039, November.
- Li Ping Gan & Will Recker, 2013. "Stochastic Preplanned Household Activity Pattern Problem with Uncertain Activity Participation (SHAPP)," Transportation Science, INFORMS, vol. 47(3), pages 439-454, August.
- Liu, Peng & Liao, Feixiong & Huang, Hai-Jun & Timmermans, Harry, 2015. "Dynamic activity-travel assignment in multi-state supernetworks," Transportation Research Part B: Methodological, Elsevier, vol. 81(P3), pages 656-671.
- Paleti, Rajesh, 2018. "Generalized multinomial probit Model: Accommodating constrained random parameters," Transportation Research Part B: Methodological, Elsevier, vol. 118(C), pages 248-262.
- Bhat, Chandra R., 2005. "A multiple discrete-continuous extreme value model: formulation and application to discretionary time-use decisions," Transportation Research Part B: Methodological, Elsevier, vol. 39(8), pages 679-707, September.
- Tapia, Rodrigo J. & Kourounioti, Ioanna & Thoen, Sebastian & de Bok, Michiel & Tavasszy, Lori, 2023. "A disaggregate model of passenger-freight matching in crowdshipping services," Transportation Research Part A: Policy and Practice, Elsevier, vol. 169(C).
- Allahviranloo, Mahdieh & Recker, Will, 2013. "Daily activity pattern recognition by using support vector machines with multiple classes," Transportation Research Part B: Methodological, Elsevier, vol. 58(C), pages 16-43.
More about this item
Keywords
Household activity pattern problem; Travel demand forecasting; Activity-based travel demand models; Activity-travel patterns; Random utility estimation; Travel behavior;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transa:v:114:y:2018:i:pb:p:321-337. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/547/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.