IDEAS home Printed from https://ideas.repec.org/p/cdl/itsrrp/qt3js9x18d.html
   My bibliography  Save this paper

Increasing Freeway Merge Capacity Through On-Ramp Metering

Author

Listed:
  • Rudjanakanoknad, Jittichai

Abstract

This research describes field studies of how on-ramp metering can increase the capacity of freeway merges. Some effects of on-ramp metering have been known for a long time. We have known that on-ramp metering can 1) increase freeway flow and speed upstream of a merge; and 2) reduce system-wide delay by alleviating gridlock-causing queues that have blocked off-ramps. However, past studies have not conclusively shown that on-ramp metering can increase the maximum outflow (capacity) of freeway merges. The experiments conducted in the present study verify that on-ramp metering can increase freeway merge capacities. Detailed traffic data collected from videos for more than 30 rush periods at two merge bottlenecks unveil six major research findings: 1) merge capacity diminishes after merges became active bottlenecks; 2) the mechanism of "capacity drop" has been identified and was found to be reproducible across all days and it both sites. By metering the on-ramp in certain strategic ways, the capacity drop mechanism can be 3) reversed; and 4) even averted; 5) such metering strategies can be fully automated using loop detector measurements; and 6) control strategies other than ramp metering also hold promise for increasing merge capacities. These findings provide much-needed information concerning how to control freeway traffic. They also offer basis for more realistic theories of merging traffic flow.

Suggested Citation

  • Rudjanakanoknad, Jittichai, 2005. "Increasing Freeway Merge Capacity Through On-Ramp Metering," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt3js9x18d, Institute of Transportation Studies, UC Berkeley.
  • Handle: RePEc:cdl:itsrrp:qt3js9x18d
    as

    Download full text from publisher

    File URL: https://www.escholarship.org/uc/item/3js9x18d.pdf;origin=repeccitec
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Munoz, Juan Carlos & Daganzo, Carlos F, 2002. "Fingerprinting Traffic From Static Freeway Sensors," University of California Transportation Center, Working Papers qt1mf4n2w8, University of California Transportation Center.
    2. Daganzo, Carlos F., 1995. "The cell transmission model, part II: Network traffic," Transportation Research Part B: Methodological, Elsevier, vol. 29(2), pages 79-93, April.
    3. Cassidy, Michael J. & Anani, Shadi B. & Haigwood, John M., 2002. "Study of freeway traffic near an off-ramp," Transportation Research Part A: Policy and Practice, Elsevier, vol. 36(6), pages 563-572, July.
    4. Daganzo, Carlos F. & Laval, Jorge & Munoz, Juan Carlos, 2002. "Ten Strategies for Freeway Congestion Mitigation with Advanced Technologies," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt4kd6v6qf, Institute of Transportation Studies, UC Berkeley.
    5. Smaragdis, Emmanouil & Papageorgiou, Markos & Kosmatopoulos, Elias, 2004. "A flow-maximizing adaptive local ramp metering strategy," Transportation Research Part B: Methodological, Elsevier, vol. 38(3), pages 251-270, March.
    6. Haj-Salem, Habib & Papageorgiou, Marcos, 1995. "Ramp metering impact on urban corridor traffic: Field results," Transportation Research Part A: Policy and Practice, Elsevier, vol. 29(4), pages 303-319, July.
    7. Muñoz, Juan Carlos & Daganzo, Carlos F., 2002. "The bottleneck mechanism of a freeway diverge," Transportation Research Part A: Policy and Practice, Elsevier, vol. 36(6), pages 483-505, July.
    8. Cassidy, Michael J. & Bertini, Robert L., 1999. "Some traffic features at freeway bottlenecks," Transportation Research Part B: Methodological, Elsevier, vol. 33(1), pages 25-42, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kim, Kwangho & Cassidy, Michael J., 2010. "On-Ramp Metering and Commuter Delay: A Before and After Study," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt0jd2v2z2, Institute of Transportation Studies, UC Berkeley.
    2. Kim, Kwangho & Cassidy, Michael J., 2012. "A capacity-increasing mechanism in freeway traffic," Transportation Research Part B: Methodological, Elsevier, vol. 46(9), pages 1260-1272.
    3. Hall, Jonathan D., 2018. "Pareto improvements from Lexus Lanes: The effects of pricing a portion of the lanes on congested highways," Journal of Public Economics, Elsevier, vol. 158(C), pages 113-125.
    4. Mingmin Guo & Zheng Wu & Huibing Zhu, 2018. "Empirical study of lane-changing behavior on three Chinese freeways," PLOS ONE, Public Library of Science, vol. 13(1), pages 1-22, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cassidy, Michael J. & Rudjanakanoknad, Jittichai, 2005. "Increasing the capacity of an isolated merge by metering its on-ramp," Transportation Research Part B: Methodological, Elsevier, vol. 39(10), pages 896-913, December.
    2. Cassidy, Michael J. & Rudjanakanoknad, Jittichai, 2004. "Increasing Capacity of an Isolated Merge by Metering its On-Ramp," University of California Transportation Center, Working Papers qt30s46939, University of California Transportation Center.
    3. Cassidy, Michael J. & Jang, Kitae & Daganzo, Carlos F., 2010. "The smoothing effect of carpool lanes on freeway bottlenecks," Transportation Research Part A: Policy and Practice, Elsevier, vol. 44(2), pages 65-75, February.
    4. Chen, Danjue & Ahn, Soyoung, 2018. "Capacity-drop at extended bottlenecks: Merge, diverge, and weave," Transportation Research Part B: Methodological, Elsevier, vol. 108(C), pages 1-20.
    5. Jang, Kitae & Cassidy, Michael J., 2012. "Dual influences on vehicle speed in special-use lanes and critique of US regulation," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(7), pages 1108-1123.
    6. Mahdi SHEHAB & Dawood ALKANDARI, 2021. "Drivers' Tendencies To Engage In Aberrant Driving Behaviors That Violate Traffic Regulations In Kuwait," Transport Problems, Silesian University of Technology, Faculty of Transport, vol. 16(1), pages 19-28, March.
    7. Jin, Wen-Long & Zhang, H. Michael, 2013. "An instantaneous kinematic wave theory of diverging traffic," Transportation Research Part B: Methodological, Elsevier, vol. 48(C), pages 1-16.
    8. Jang, Kitae & Cassidy, Michael J., 2011. "Dual Influences on Vehicle Speeds in Special-Use Lanes and Policy Implications," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt0dd859tf, Institute of Transportation Studies, UC Berkeley.
    9. Menendez, Monica & Daganzo, Carlos F., 2007. "Effects of HOV lanes on freeway bottlenecks," Transportation Research Part B: Methodological, Elsevier, vol. 41(8), pages 809-822, October.
    10. Cassidy, Michael J. & Ahn, Soyoung, 2004. "Driver Turn-Taking Behavior in Congested Freeway Merges," University of California Transportation Center, Working Papers qt06j9k7h2, University of California Transportation Center.
    11. Jin, Wen-Long, 2017. "Kinematic wave models of lane-drop bottlenecks," Transportation Research Part B: Methodological, Elsevier, vol. 105(C), pages 507-522.
    12. Kontorinaki, Maria & Karafyllis, Iasson & Papageorgiou, Markos, 2019. "Local and coordinated ramp metering within the unifying framework of an adaptive control scheme," Transportation Research Part A: Policy and Practice, Elsevier, vol. 128(C), pages 89-113.
    13. Hall, Jonathan D., 2018. "Pareto improvements from Lexus Lanes: The effects of pricing a portion of the lanes on congested highways," Journal of Public Economics, Elsevier, vol. 158(C), pages 113-125.
    14. van Erp, Paul B.C. & Knoop, Victor L. & Hoogendoorn, Serge P., 2018. "Macroscopic traffic state estimation using relative flows from stationary and moving observers," Transportation Research Part B: Methodological, Elsevier, vol. 114(C), pages 281-299.
    15. Jin, Wen-Long, 2012. "A kinematic wave theory of multi-commodity network traffic flow," Transportation Research Part B: Methodological, Elsevier, vol. 46(8), pages 1000-1022.
    16. Cassidy, Michael J. & Daganzo, Carlos F. & Jang, Kitae & Chung, Koohong, 2006. "Empirical Reassessment of Traffic Operations: Freeway Bottlenecks and the Case for HOV Lanes," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt31h8z81t, Institute of Transportation Studies, UC Berkeley.
    17. Bish, Douglas R. & Sherali, Hanif D., 2013. "Aggregate-level demand management in evacuation planning," European Journal of Operational Research, Elsevier, vol. 224(1), pages 79-92.
    18. Jin, Wen-Long, 2010. "A kinematic wave theory of lane-changing traffic flow," Transportation Research Part B: Methodological, Elsevier, vol. 44(8-9), pages 1001-1021, September.
    19. Chung, Koohong & Rudjanakanoknad, Jittichai & Cassidy, Michael J., 2007. "Relation between traffic density and capacity drop at three freeway bottlenecks," Transportation Research Part B: Methodological, Elsevier, vol. 41(1), pages 82-95, January.
    20. Yeo, Hwasoo, 2008. "Asymmetric Microscopic Driving Behavior Theory," University of California Transportation Center, Working Papers qt1tn1m968, University of California Transportation Center.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cdl:itsrrp:qt3js9x18d. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Lisa Schiff (email available below). General contact details of provider: https://edirc.repec.org/data/itucbus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.