IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v45y2011i2p385-391.html
   My bibliography  Save this article

Hysteresis in traffic flow revisited: An improved measurement method

Author

Listed:
  • Laval, Jorge A.

Abstract

This paper presents new insights on the hysteresis phenomenon in congested freeway traffic. It is found that existing theories based on different driver behavior for acceleration and deceleration are incomplete. The data suggests that one needs to consider aggressive and timid driver behavior as well. These findings are based on an improved method for measuring traffic flow variables from trajectory data consistently with kinematic wave theory.

Suggested Citation

  • Laval, Jorge A., 2011. "Hysteresis in traffic flow revisited: An improved measurement method," Transportation Research Part B: Methodological, Elsevier, vol. 45(2), pages 385-391, February.
  • Handle: RePEc:eee:transb:v:45:y:2011:i:2:p:385-391
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0191-2615(10)00101-3
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cassidy, Michael J., 1998. "Bivariate relations in nearly stationary highway traffic," Transportation Research Part B: Methodological, Elsevier, vol. 32(1), pages 49-59, January.
    2. Zhang, H. M., 1999. "A mathematical theory of traffic hysteresis," Transportation Research Part B: Methodological, Elsevier, vol. 33(1), pages 1-23, February.
    3. Muñoz, Juan Carlos & Daganzo, Carlos F., 2002. "The bottleneck mechanism of a freeway diverge," Transportation Research Part A: Policy and Practice, Elsevier, vol. 36(6), pages 483-505, July.
    4. Munoz, Juan Carlos & Daganzo, Carlos, 2000. "Experimental Characterization of Multi-Lane Freeway Traffic Upstream of an Off-Ramp Bottleneck," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt8635j1df, Institute of Transportation Studies, UC Berkeley.
    5. Hurdle, V. F. & Son, Bongsoo, 2000. "Road test of a freeway model," Transportation Research Part A: Policy and Practice, Elsevier, vol. 34(7), pages 537-564, September.
    6. Lin, Wei-Hua & Lo, Hong K., 2003. "A theoretical probe of a German experiment on stationary moving traffic jams," Transportation Research Part B: Methodological, Elsevier, vol. 37(3), pages 251-261, March.
    7. Laval, Jorge A. & Leclercq, Ludovic, 2008. "Microscopic modeling of the relaxation phenomenon using a macroscopic lane-changing model," Transportation Research Part B: Methodological, Elsevier, vol. 42(6), pages 511-522, July.
    8. Cassidy, Michael J. & Bertini, Robert L., 1999. "Some traffic features at freeway bottlenecks," Transportation Research Part B: Methodological, Elsevier, vol. 33(1), pages 25-42, February.
    9. Hwasoo Yeo & Alexander Skabardonis, 2009. "Understanding Stop-and-go Traffic in View of Asymmetric Traffic Theory," Springer Books, in: William H. K. Lam & S. C. Wong & Hong K. Lo (ed.), Transportation and Traffic Theory 2009: Golden Jubilee, chapter 0, pages 99-115, Springer.
    10. Daganzo, C. F. & Cassidy, M. J. & Bertini, R. L., 1999. "Possible explanations of phase transitions in highway traffic," Transportation Research Part A: Policy and Practice, Elsevier, vol. 33(5), pages 365-379, June.
    11. Robert, Tim & Lin, Wei-Hua & Cassidy, Michael, 1999. "Validation of the Incremental Transfer Model," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt48s3v44r, Institute of Transportation Studies, UC Berkeley.
    12. Newell, G. F., 2002. "A simplified car-following theory: a lower order model," Transportation Research Part B: Methodological, Elsevier, vol. 36(3), pages 195-205, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yeo, Hwasoo, 2008. "Asymmetric Microscopic Driving Behavior Theory," University of California Transportation Center, Working Papers qt1tn1m968, University of California Transportation Center.
    2. Juan Carlos Muñoz & Carlos F. Daganzo, 2003. "Structure of the Transition Zone Behind Freeway Queues," Transportation Science, INFORMS, vol. 37(3), pages 312-329, August.
    3. Blandin, Sébastien & Argote, Juan & Bayen, Alexandre M. & Work, Daniel B., 2013. "Phase transition model of non-stationary traffic flow: Definition, properties and solution method," Transportation Research Part B: Methodological, Elsevier, vol. 52(C), pages 31-55.
    4. Chen, Danjue & Ahn, Soyoung, 2018. "Capacity-drop at extended bottlenecks: Merge, diverge, and weave," Transportation Research Part B: Methodological, Elsevier, vol. 108(C), pages 1-20.
    5. Chen, Danjue & Ahn, Soyoung & Laval, Jorge & Zheng, Zuduo, 2014. "On the periodicity of traffic oscillations and capacity drop: The role of driver characteristics," Transportation Research Part B: Methodological, Elsevier, vol. 59(C), pages 117-136.
    6. Oh, Simon & Yeo, Hwasoo, 2015. "Impact of stop-and-go waves and lane changes on discharge rate in recovery flow," Transportation Research Part B: Methodological, Elsevier, vol. 77(C), pages 88-102.
    7. Geroliminis, Nikolas & Sun, Jie, 2011. "Hysteresis phenomena of a Macroscopic Fundamental Diagram in freeway networks," Transportation Research Part A: Policy and Practice, Elsevier, vol. 45(9), pages 966-979, November.
    8. Han, Youngjun & Ahn, Soyoung, 2018. "Stochastic modeling of breakdown at freeway merge bottleneck and traffic control method using connected automated vehicle," Transportation Research Part B: Methodological, Elsevier, vol. 107(C), pages 146-166.
    9. Laval, Jorge A. & Toth, Christopher S. & Zhou, Yi, 2014. "A parsimonious model for the formation of oscillations in car-following models," Transportation Research Part B: Methodological, Elsevier, vol. 70(C), pages 228-238.
    10. Wang, Xiao & Jiang, Rui & Li, Li & Lin, Yi-Lun & Wang, Fei-Yue, 2019. "Long memory is important: A test study on deep-learning based car-following model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 514(C), pages 786-795.
    11. Cassidy, Michael J. & Jang, Kitae & Daganzo, Carlos F., 2010. "The smoothing effect of carpool lanes on freeway bottlenecks," Transportation Research Part A: Policy and Practice, Elsevier, vol. 44(2), pages 65-75, February.
    12. Ngoduy, D. & Liu, R., 2007. "Multiclass first-order simulation model to explain non-linear traffic phenomena," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 385(2), pages 667-682.
    13. Treiber, Martin & Kesting, Arne, 2018. "The Intelligent Driver Model with stochasticity – New insights into traffic flow oscillations," Transportation Research Part B: Methodological, Elsevier, vol. 117(PB), pages 613-623.
    14. Kai Nagel & Peter Wagner & Richard Woesler, 2003. "Still Flowing: Approaches to Traffic Flow and Traffic Jam Modeling," Operations Research, INFORMS, vol. 51(5), pages 681-710, October.
    15. Zheng, Zuduo, 2014. "Recent developments and research needs in modeling lane changing," Transportation Research Part B: Methodological, Elsevier, vol. 60(C), pages 16-32.
    16. Zhou, Fang & Li, Xiaopeng & Ma, Jiaqi, 2017. "Parsimonious shooting heuristic for trajectory design of connected automated traffic part I: Theoretical analysis with generalized time geography," Transportation Research Part B: Methodological, Elsevier, vol. 95(C), pages 394-420.
    17. Qian, Wei-Liang & F. Siqueira, Adriano & F. Machado, Romuel & Lin, Kai & Grant, Ted W., 2017. "Dynamical capacity drop in a nonlinear stochastic traffic model," Transportation Research Part B: Methodological, Elsevier, vol. 105(C), pages 328-339.
    18. Wei, Dali & Liu, Hongchao, 2013. "Analysis of asymmetric driving behavior using a self-learning approach," Transportation Research Part B: Methodological, Elsevier, vol. 47(C), pages 1-14.
    19. Mattas, K. & Albano, G. & Donà, R. & He, Y. & Ciuffo, B., 2023. "On the Relationship between Traffic Hysteresis and String Stability of Vehicle Platoons," Transportation Research Part B: Methodological, Elsevier, vol. 174(C).
    20. Daganzo, Carlos F., 2002. "A behavioral theory of multi-lane traffic flow. Part I: Long homogeneous freeway sections," Transportation Research Part B: Methodological, Elsevier, vol. 36(2), pages 131-158, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:45:y:2011:i:2:p:385-391. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.