IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-1-4419-0820-9_6.html
   My bibliography  Save this book chapter

Understanding Stop-and-go Traffic in View of Asymmetric Traffic Theory

In: Transportation and Traffic Theory 2009: Golden Jubilee

Author

Listed:
  • Hwasoo Yeo

    (University of California)

  • Alexander Skabardonis

    (University of California)

Abstract

Stop-and-go traffic is a frequently observed phenomenon in congested highway traffic, but it has not been accurately modeled in existing traffic models. Car-following models based on kinematic flow theory cannot model stop-and-go traffic. Other approach assumed traffic states deviating from the equilibrium curve in the fundamental diagram, and the transitions between them, but no explanation was provided on the reason for the existence of different states. There is a need to understand the mechanism of stop-and-go traffic in terms of generation, propagation and dissipation in order to accurately model traffic dynamics. We propose an asymmetric traffic theory and explain the stop-and-go traffic phenomenon in light of the developed theory. The proposed theory is verified using individual vehicle trajectories from two freeway sites in California, US, collected as part of the Next Generation Simulation (NGSIM) project.

Suggested Citation

  • Hwasoo Yeo & Alexander Skabardonis, 2009. "Understanding Stop-and-go Traffic in View of Asymmetric Traffic Theory," Springer Books, in: William H. K. Lam & S. C. Wong & Hong K. Lo (ed.), Transportation and Traffic Theory 2009: Golden Jubilee, chapter 0, pages 99-115, Springer.
  • Handle: RePEc:spr:sprchp:978-1-4419-0820-9_6
    DOI: 10.1007/978-1-4419-0820-9_6
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Laval, Jorge A. & Toth, Christopher S. & Zhou, Yi, 2014. "A parsimonious model for the formation of oscillations in car-following models," Transportation Research Part B: Methodological, Elsevier, vol. 70(C), pages 228-238.
    2. Wang, Xiao & Jiang, Rui & Li, Li & Lin, Yi-Lun & Wang, Fei-Yue, 2019. "Long memory is important: A test study on deep-learning based car-following model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 514(C), pages 786-795.
    3. Jung, Jaeyoung & Chen, Rex & Jin, Wenlong & Jayakrishnan, R. & Regan, Amelia C, 2010. "An Empirical Study of Inter-Vehicle Communication Performance Using NS-2," University of California Transportation Center, Working Papers qt874253j6, University of California Transportation Center.
    4. Wei, Dali & Liu, Hongchao, 2013. "Analysis of asymmetric driving behavior using a self-learning approach," Transportation Research Part B: Methodological, Elsevier, vol. 47(C), pages 1-14.
    5. Blandin, Sébastien & Argote, Juan & Bayen, Alexandre M. & Work, Daniel B., 2013. "Phase transition model of non-stationary traffic flow: Definition, properties and solution method," Transportation Research Part B: Methodological, Elsevier, vol. 52(C), pages 31-55.
    6. Laval, Jorge A., 2011. "Hysteresis in traffic flow revisited: An improved measurement method," Transportation Research Part B: Methodological, Elsevier, vol. 45(2), pages 385-391, February.
    7. Geroliminis, Nikolas & Sun, Jie, 2011. "Hysteresis phenomena of a Macroscopic Fundamental Diagram in freeway networks," Transportation Research Part A: Policy and Practice, Elsevier, vol. 45(9), pages 966-979, November.
    8. Ngoduy, D., 2021. "Noise-induced instability of a class of stochastic higher order continuum traffic models," Transportation Research Part B: Methodological, Elsevier, vol. 150(C), pages 260-278.
    9. Oh, Simon & Yeo, Hwasoo, 2015. "Impact of stop-and-go waves and lane changes on discharge rate in recovery flow," Transportation Research Part B: Methodological, Elsevier, vol. 77(C), pages 88-102.
    10. Treiber, Martin & Kesting, Arne, 2018. "The Intelligent Driver Model with stochasticity – New insights into traffic flow oscillations," Transportation Research Part B: Methodological, Elsevier, vol. 117(PB), pages 613-623.
    11. Zhang, Jing & Wang, Bo & Li, Shubin & Sun, Tao & Wang, Tao, 2020. "Modeling and application analysis of car-following model with predictive headway variation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    12. Yao, Handong & Li, Qianwen & Li, Xiaopeng, 2020. "A study of relationships in traffic oscillation features based on field experiments," Transportation Research Part A: Policy and Practice, Elsevier, vol. 141(C), pages 339-355.
    13. Patire, Anthony D. & Cassidy, Michael J., 2011. "Lane changing patterns of bane and benefit: Observations of an uphill expressway," Transportation Research Part B: Methodological, Elsevier, vol. 45(4), pages 656-666, May.
    14. Zheng, Shi-Teng & Jiang, Rui & Tian, Jun-Fang & Zhang, H.M. & Li, Zhen-Hua & Gao, Lan-Da & Jia, Bin, 2021. "Experimental study on properties of lightly congested flow," Transportation Research Part B: Methodological, Elsevier, vol. 149(C), pages 1-19.
    15. Chen, Danjue & Laval, Jorge A. & Ahn, Soyoung & Zheng, Zuduo, 2012. "Microscopic traffic hysteresis in traffic oscillations: A behavioral perspective," Transportation Research Part B: Methodological, Elsevier, vol. 46(10), pages 1440-1453.
    16. Zheng, Zuduo & Ahn, Soyoung & Chen, Danjue & Laval, Jorge, 2011. "Freeway traffic oscillations: Microscopic analysis of formations and propagations using Wavelet Transform," Transportation Research Part B: Methodological, Elsevier, vol. 45(9), pages 1378-1388.
    17. Mattas, K. & Albano, G. & Donà, R. & He, Y. & Ciuffo, B., 2023. "On the Relationship between Traffic Hysteresis and String Stability of Vehicle Platoons," Transportation Research Part B: Methodological, Elsevier, vol. 174(C).
    18. Zhou, Yang & Ahn, Soyoung & Wang, Meng & Hoogendoorn, Serge, 2020. "Stabilizing mixed vehicular platoons with connected automated vehicles: An H-infinity approach," Transportation Research Part B: Methodological, Elsevier, vol. 132(C), pages 152-170.
    19. Chen, Danjue & Ahn, Soyoung & Laval, Jorge & Zheng, Zuduo, 2014. "On the periodicity of traffic oscillations and capacity drop: The role of driver characteristics," Transportation Research Part B: Methodological, Elsevier, vol. 59(C), pages 117-136.
    20. Sun, Jie & Zheng, Zuduo & Sun, Jian, 2020. "The relationship between car following string instability and traffic oscillations in finite-sized platoons and its use in easing congestion via connected and automated vehicles with IDM based control," Transportation Research Part B: Methodological, Elsevier, vol. 142(C), pages 58-83.
    21. Saifuzzaman, Mohammad & Zheng, Zuduo & Haque, Md. Mazharul & Washington, Simon, 2017. "Understanding the mechanism of traffic hysteresis and traffic oscillations through the change in task difficulty level," Transportation Research Part B: Methodological, Elsevier, vol. 105(C), pages 523-538.
    22. Xiqun (Michael) Chen & Zhiheng Li & Li Li & Qixin Shi, 2014. "A Traffic Breakdown Model Based on Queueing Theory," Networks and Spatial Economics, Springer, vol. 14(3), pages 485-504, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-1-4419-0820-9_6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.