IDEAS home Printed from https://ideas.repec.org/a/eee/transa/v45y2011i9p966-979.html
   My bibliography  Save this article

Hysteresis phenomena of a Macroscopic Fundamental Diagram in freeway networks

Author

Listed:
  • Geroliminis, Nikolas
  • Sun, Jie

Abstract

Observations of traffic pairs of flow vs. density or occupancy for individual locations in freeways or arterials are usually scattered about an underlying curve. Recent observations from empirical data in arterial networks showed that in some cases by aggregating the highly scattered plots of flow vs. density from individual loop detectors, the scatter almost disappears and well-defined macroscopic relations exist between space-mean network flow and network density. Despite these findings for the existence of well-defined relations with low scatter, these curves should not be universal. In this paper we investigate if well-defined macroscopic relations exist for freeway network systems, by analyzing real data from Minnesota's freeways. We show that freeway network systems not only have curves with high scatter, but they also exhibit hysteresis phenomena, where higher network flows are observed for the same average network density in the onset and lower in the offset of congestion. The mechanisms of traffic hysteresis phenomena at the network level are analyzed in this paper and they have dissimilarities to the causes of the hysteresis phenomena at the micro/meso level. The explanation of the phenomenon is dual. The first reason is that there are different spatial and temporal distributions of congestion for the same level of average density. Another reason is the synchronized occurrence of transitions from individual detectors during the offset of the peak period, with points remain beneath the equilibrium curve. Both the hysteresis phenomenon and its causes are consistently observed for different spatial aggregations of the network.

Suggested Citation

  • Geroliminis, Nikolas & Sun, Jie, 2011. "Hysteresis phenomena of a Macroscopic Fundamental Diagram in freeway networks," Transportation Research Part A: Policy and Practice, Elsevier, vol. 45(9), pages 966-979, November.
  • Handle: RePEc:eee:transa:v:45:y:2011:i:9:p:966-979
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0965856411000620
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Olszewski, Piotr & Fan, Henry S. L. & Tan, Yan-Weng, 1995. "Area-wide traffic speed-flow model for the Singapore CBD," Transportation Research Part A: Policy and Practice, Elsevier, vol. 29(4), pages 273-281, July.
    2. Cassidy, Michael J., 1998. "Bivariate relations in nearly stationary highway traffic," Transportation Research Part B: Methodological, Elsevier, vol. 32(1), pages 49-59, January.
    3. Zhang, H. M., 1999. "A mathematical theory of traffic hysteresis," Transportation Research Part B: Methodological, Elsevier, vol. 33(1), pages 1-23, February.
    4. Daganzo, Carlos F., 2002. "A behavioral theory of multi-lane traffic flow. Part I: Long homogeneous freeway sections," Transportation Research Part B: Methodological, Elsevier, vol. 36(2), pages 131-158, February.
    5. D. Helbing & M. Treiber & A. Kesting & M. Schönhof, 2009. "Theoretical vs. empirical classification and prediction of congested traffic states," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 69(4), pages 583-598, June.
    6. Daganzo, Carlos F., 2007. "Urban gridlock: Macroscopic modeling and mitigation approaches," Transportation Research Part B: Methodological, Elsevier, vol. 41(1), pages 49-62, January.
    7. Geroliminis, Nikolas & Sun, Jie, 2011. "Properties of a well-defined macroscopic fundamental diagram for urban traffic," Transportation Research Part B: Methodological, Elsevier, vol. 45(3), pages 605-617, March.
    8. Cassidy, Michael J. & Bertini, Robert L., 1999. "Some traffic features at freeway bottlenecks," Transportation Research Part B: Methodological, Elsevier, vol. 33(1), pages 25-42, February.
    9. Geroliminis, Nikolas & Daganzo, Carlos F., 2008. "Existence of urban-scale macroscopic fundamental diagrams: Some experimental findings," Transportation Research Part B: Methodological, Elsevier, vol. 42(9), pages 759-770, November.
    10. Hwasoo Yeo & Alexander Skabardonis, 2009. "Understanding Stop-and-go Traffic in View of Asymmetric Traffic Theory," Springer Books, in: William H. K. Lam & S. C. Wong & Hong K. Lo (ed.), Transportation and Traffic Theory 2009: Golden Jubilee, chapter 0, pages 99-115, Springer.
    11. Daganzo, Carlos F. & Gayah, Vikash V. & Gonzales, Eric J., 2011. "Macroscopic relations of urban traffic variables: Bifurcations, multivaluedness and instability," Transportation Research Part B: Methodological, Elsevier, vol. 45(1), pages 278-288, January.
    12. Daganzo, Carlos F. & Geroliminis, Nikolas, 2008. "An analytical approximation for the macroscopic fundamental diagram of urban traffic," Transportation Research Part B: Methodological, Elsevier, vol. 42(9), pages 771-781, November.
    13. Laval, Jorge A. & Daganzo, Carlos F., 2006. "Lane-changing in traffic streams," Transportation Research Part B: Methodological, Elsevier, vol. 40(3), pages 251-264, March.
    14. Siamak Ardekani & Robert Herman, 1987. "Urban Network-Wide Traffic Variables and Their Relations," Transportation Science, INFORMS, vol. 21(1), pages 1-16, February.
    15. Daganzo, Carlos F & Geroliminis, Nikolas, 2008. "An analytical approximation for the macropscopic fundamental diagram of urban traffic," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt4cb8h3jm, Institute of Transportation Studies, UC Berkeley.
    16. Zhang, H. M., 2003. "On the consistency of a class of traffic flow models," Transportation Research Part B: Methodological, Elsevier, vol. 37(1), pages 101-105, January.
    17. Amin Mazloumian & Nikolas Geroliminis & Dirk Helbing, "undated". "The Spatial Variability of Vehicle Densities as Determinant of Urban Network Capacity," Working Papers CCSS-09-009, ETH Zurich, Chair of Systems Design.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gayah, Vikash V. & Gao, Xueyu (Shirley) & Nagle, Andrew S., 2014. "On the impacts of locally adaptive signal control on urban network stability and the Macroscopic Fundamental Diagram," Transportation Research Part B: Methodological, Elsevier, vol. 70(C), pages 255-268.
    2. Leclercq, Ludovic & Geroliminis, Nikolas, 2013. "Estimating MFDs in simple networks with route choice," Transportation Research Part B: Methodological, Elsevier, vol. 57(C), pages 468-484.
    3. Wada, Kentaro & Satsukawa, Koki & Smith, Mike & Akamatsu, Takashi, 2019. "Network throughput under dynamic user equilibrium: Queue spillback, paradox and traffic control," Transportation Research Part B: Methodological, Elsevier, vol. 126(C), pages 391-413.
    4. Jin, Wen-Long & Gan, Qi-Jian & Gayah, Vikash V., 2013. "A kinematic wave approach to traffic statics and dynamics in a double-ring network," Transportation Research Part B: Methodological, Elsevier, vol. 57(C), pages 114-131.
    5. Gayah, Vikash V. & Daganzo, Carlos F., 2011. "Clockwise hysteresis loops in the Macroscopic Fundamental Diagram: An effect of network instability," Transportation Research Part B: Methodological, Elsevier, vol. 45(4), pages 643-655, May.
    6. Zhang, Lele & Garoni, Timothy M & de Gier, Jan, 2013. "A comparative study of Macroscopic Fundamental Diagrams of arterial road networks governed by adaptive traffic signal systems," Transportation Research Part B: Methodological, Elsevier, vol. 49(C), pages 1-23.
    7. Geroliminis, Nikolas & Sun, Jie, 2011. "Properties of a well-defined macroscopic fundamental diagram for urban traffic," Transportation Research Part B: Methodological, Elsevier, vol. 45(3), pages 605-617, March.
    8. Zheng, Nan & Geroliminis, Nikolas, 2013. "On the distribution of urban road space for multimodal congested networks," Transportation Research Part B: Methodological, Elsevier, vol. 57(C), pages 326-341.
    9. Du, Jie & Wong, S.C. & Shu, Chi-Wang & Zhang, Mengping, 2015. "Reformulating the Hoogendoorn–Bovy predictive dynamic user-optimal model in continuum space with anisotropic condition," Transportation Research Part B: Methodological, Elsevier, vol. 79(C), pages 189-217.
    10. Haddad, Jack & Ramezani, Mohsen & Geroliminis, Nikolas, 2013. "Cooperative traffic control of a mixed network with two urban regions and a freeway," Transportation Research Part B: Methodological, Elsevier, vol. 54(C), pages 17-36.
    11. Haddad, Jack & Geroliminis, Nikolas, 2012. "On the stability of traffic perimeter control in two-region urban cities," Transportation Research Part B: Methodological, Elsevier, vol. 46(9), pages 1159-1176.
    12. Daganzo, Carlos F., 2011. "On the macroscopic stability of freeway traffic," Transportation Research Part B: Methodological, Elsevier, vol. 45(5), pages 782-788, June.
    13. Guo, Qiangqiang & Ban, Xuegang (Jeff), 2020. "Macroscopic fundamental diagram based perimeter control considering dynamic user equilibrium," Transportation Research Part B: Methodological, Elsevier, vol. 136(C), pages 87-109.
    14. Gayah, Vikash V. & Daganzo, Carlos F., 2010. "Clockwise Hysteresis Loops in the MacroscopicFundamental Diagram," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt2x98k1x2, Institute of Transportation Studies, UC Berkeley.
    15. Laval, Jorge A. & Castrillón, Felipe, 2015. "Stochastic approximations for the macroscopic fundamental diagram of urban networks," Transportation Research Part B: Methodological, Elsevier, vol. 81(P3), pages 904-916.
    16. Amin Mazloumian & Nikolas Geroliminis & Dirk Helbing, "undated". "The Spatial Variability of Vehicle Densities as Determinant of Urban Network Capacity," Working Papers CCSS-09-009, ETH Zurich, Chair of Systems Design.
    17. Ramezani, Mohsen & Haddad, Jack & Geroliminis, Nikolas, 2015. "Dynamics of heterogeneity in urban networks: aggregated traffic modeling and hierarchical control," Transportation Research Part B: Methodological, Elsevier, vol. 74(C), pages 1-19.
    18. Geroliminis, Nikolas & Boyacı, Burak, 2012. "The effect of variability of urban systems characteristics in the network capacity," Transportation Research Part B: Methodological, Elsevier, vol. 46(10), pages 1607-1623.
    19. Haddad, Jack & Zheng, Zhengfei, 2020. "Adaptive perimeter control for multi-region accumulation-based models with state delays," Transportation Research Part B: Methodological, Elsevier, vol. 137(C), pages 133-153.
    20. Arnott, Richard, 2013. "A bathtub model of downtown traffic congestion," Journal of Urban Economics, Elsevier, vol. 76(C), pages 110-121.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transa:v:45:y:2011:i:9:p:966-979. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/547/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.