IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v45y2011i1p278-288.html
   My bibliography  Save this article

Macroscopic relations of urban traffic variables: Bifurcations, multivaluedness and instability

Author

Listed:
  • Daganzo, Carlos F.
  • Gayah, Vikash V.
  • Gonzales, Eric J.

Abstract

Recent experimental work has shown that the average flow and average density within certain urban networks are related by a unique, reproducible curve known as the Macroscopic Fundamental Diagram (MFD). For networks consisting of a single route this MFD can be predicted analytically; but when the networks consist of multiple overlapping routes experience shows that the flows observed in congestion for a given density are less than those one would predict if the routes were homogeneously congested and did not overlap. These types of networks also tend to jam at densities that are only a fraction of their routes' average jam density. This paper provides an explanation for these phenomena. It shows that, even for perfectly homogeneous networks with spatially uniform travel patterns, symmetric equilibrium patterns with equal flows and densities across all links are unstable if the average network density is sufficiently high. Instead, the stable equilibrium patterns are asymmetric. For this reason the networks jam at lower densities and exhibit lower flows than one would predict if traffic was evenly distributed. Analysis of small idealized networks that can be treated as simple dynamical systems shows that these networks undergo a bifurcation at a network-specific critical density such that for lower densities the MFDs have predictably high flows and are univalued, and for higher densities the order breaks down. Microsimulations show that this bifurcation also manifests itself in large symmetric networks. In this case though, the bifurcation is more pernicious: once the network density exceeds the critical value, the stable state is one of complete gridlock with zero flow. It is therefore important to ensure in real-world applications that a network's density never be allowed to approach this critical value. Fortunately, analysis shows that the bifurcation's critical density increases considerably if some of the drivers choose their routes adaptively in response to traffic conditions. So far, for networks with adaptive drivers, bifurcations have only been observed in simulations, but not (yet) in real life. This could be because real drivers are more adaptive than simulated drivers and/or because the observed real networks were not sufficiently congested.

Suggested Citation

  • Daganzo, Carlos F. & Gayah, Vikash V. & Gonzales, Eric J., 2011. "Macroscopic relations of urban traffic variables: Bifurcations, multivaluedness and instability," Transportation Research Part B: Methodological, Elsevier, vol. 45(1), pages 278-288, January.
  • Handle: RePEc:eee:transb:v:45:y:2011:i:1:p:278-288
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0191-2615(10)00095-0
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. repec:cdl:itsrrp:qt7qd590bv is not listed on IDEAS
    2. Daganzo, Carlos F., 2006. "In traffic flow, cellular automata = kinematic waves," Transportation Research Part B: Methodological, Elsevier, vol. 40(5), pages 396-403, June.
    3. Geroliminis, Nikolas & Daganzo, Carlos F., 2008. "Existence of urban-scale macroscopic fundamental diagrams: Some experimental findings," Transportation Research Part B: Methodological, Elsevier, vol. 42(9), pages 759-770, November.
    4. Carlos F. Daganzo, 1998. "Queue Spillovers in Transportation Networks with a Route Choice," Transportation Science, INFORMS, vol. 32(1), pages 3-11, February.
    5. Daganzo, Carlos F., 2007. "Urban gridlock: Macroscopic modeling and mitigation approaches," Transportation Research Part B: Methodological, Elsevier, vol. 41(1), pages 49-62, January.
    6. Daganzo, Carlos F. & Geroliminis, Nikolas, 2008. "An analytical approximation for the macroscopic fundamental diagram of urban traffic," Transportation Research Part B: Methodological, Elsevier, vol. 42(9), pages 771-781, November.
    7. repec:cdl:itsrrp:qt6dv195p7 is not listed on IDEAS
    8. repec:cdl:itsrrp:qt6kg0d8ds is not listed on IDEAS
    9. repec:cdl:itsrrp:qt4cb8h3jm is not listed on IDEAS
    10. Amin Mazloumian & Nikolas Geroliminis & Dirk Helbing, "undated". "The Spatial Variability of Vehicle Densities as Determinant of Urban Network Capacity," Working Papers CCSS-09-009, ETH Zurich, Chair of Systems Design.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wada, Kentaro & Satsukawa, Koki & Smith, Mike & Akamatsu, Takashi, 2019. "Network throughput under dynamic user equilibrium: Queue spillback, paradox and traffic control," Transportation Research Part B: Methodological, Elsevier, vol. 126(C), pages 391-413.
    2. Gayah, Vikash V. & Gao, Xueyu (Shirley) & Nagle, Andrew S., 2014. "On the impacts of locally adaptive signal control on urban network stability and the Macroscopic Fundamental Diagram," Transportation Research Part B: Methodological, Elsevier, vol. 70(C), pages 255-268.
    3. Zhang, Lele & Garoni, Timothy M & de Gier, Jan, 2013. "A comparative study of Macroscopic Fundamental Diagrams of arterial road networks governed by adaptive traffic signal systems," Transportation Research Part B: Methodological, Elsevier, vol. 49(C), pages 1-23.
    4. Jin, Wen-Long & Gan, Qi-Jian & Gayah, Vikash V., 2013. "A kinematic wave approach to traffic statics and dynamics in a double-ring network," Transportation Research Part B: Methodological, Elsevier, vol. 57(C), pages 114-131.
    5. Geroliminis, Nikolas & Sun, Jie, 2011. "Hysteresis phenomena of a Macroscopic Fundamental Diagram in freeway networks," Transportation Research Part A: Policy and Practice, Elsevier, vol. 45(9), pages 966-979, November.
    6. Du, Jie & Wong, S.C. & Shu, Chi-Wang & Zhang, Mengping, 2015. "Reformulating the Hoogendoorn–Bovy predictive dynamic user-optimal model in continuum space with anisotropic condition," Transportation Research Part B: Methodological, Elsevier, vol. 79(C), pages 189-217.
    7. Haddad, Jack & Ramezani, Mohsen & Geroliminis, Nikolas, 2013. "Cooperative traffic control of a mixed network with two urban regions and a freeway," Transportation Research Part B: Methodological, Elsevier, vol. 54(C), pages 17-36.
    8. Haddad, Jack & Geroliminis, Nikolas, 2012. "On the stability of traffic perimeter control in two-region urban cities," Transportation Research Part B: Methodological, Elsevier, vol. 46(9), pages 1159-1176.
    9. repec:cdl:itsrrp:qt2x98k1x2 is not listed on IDEAS
    10. Amirgholy, Mahyar & Shahabi, Mehrdad & Gao, H. Oliver, 2017. "Optimal design of sustainable transit systems in congested urban networks: A macroscopic approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 103(C), pages 261-285.
    11. Ramezani, Mohsen & Haddad, Jack & Geroliminis, Nikolas, 2015. "Dynamics of heterogeneity in urban networks: aggregated traffic modeling and hierarchical control," Transportation Research Part B: Methodological, Elsevier, vol. 74(C), pages 1-19.
    12. repec:cdl:itsrrp:qt7qd590bv is not listed on IDEAS
    13. Leclercq, Ludovic & Geroliminis, Nikolas, 2013. "Estimating MFDs in simple networks with route choice," Transportation Research Part B: Methodological, Elsevier, vol. 57(C), pages 468-484.
    14. Zheng, Nan & Geroliminis, Nikolas, 2013. "On the distribution of urban road space for multimodal congested networks," Transportation Research Part B: Methodological, Elsevier, vol. 57(C), pages 326-341.
    15. Amirgholy, Mahyar & Gao, H. Oliver, 2017. "Modeling the dynamics of congestion in large urban networks using the macroscopic fundamental diagram: User equilibrium, system optimum, and pricing strategies," Transportation Research Part B: Methodological, Elsevier, vol. 104(C), pages 215-237.
    16. Gayah, Vikash V. & Daganzo, Carlos F., 2011. "Clockwise hysteresis loops in the Macroscopic Fundamental Diagram: An effect of network instability," Transportation Research Part B: Methodological, Elsevier, vol. 45(4), pages 643-655, May.
    17. Geroliminis, Nikolas & Boyacı, Burak, 2012. "The effect of variability of urban systems characteristics in the network capacity," Transportation Research Part B: Methodological, Elsevier, vol. 46(10), pages 1607-1623.
    18. repec:cdl:itsrrp:qt39f0v6kq is not listed on IDEAS
    19. Bao, Yue & Verhoef, Erik T. & Koster, Paul, 2021. "Leaving the tub: The nature and dynamics of hypercongestion in a bathtub model with a restricted downstream exit," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 152(C).
    20. Liu, Wei & Geroliminis, Nikolas, 2016. "Modeling the morning commute for urban networks with cruising-for-parking: An MFD approach," Transportation Research Part B: Methodological, Elsevier, vol. 93(PA), pages 470-494.
    21. Ampountolas, Konstantinos & Zheng, Nan & Geroliminis, Nikolas, 2017. "Macroscopic modelling and robust control of bi-modal multi-region urban road networks," Transportation Research Part B: Methodological, Elsevier, vol. 104(C), pages 616-637.
    22. Amirgholy, Mahyar & Nourinejad, Mehdi & Gao, H. Oliver, 2020. "Optimal traffic control at smart intersections: Automated network fundamental diagram," Transportation Research Part B: Methodological, Elsevier, vol. 137(C), pages 2-18.
    23. Daganzo, Carlos F. & Lehe, Lewis J., 2015. "Distance-dependent congestion pricing for downtown zones," Transportation Research Part B: Methodological, Elsevier, vol. 75(C), pages 89-99.

    More about this item

    Keywords

    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:45:y:2011:i:1:p:278-288. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.