IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v45y2011i1p278-288.html
   My bibliography  Save this article

Macroscopic relations of urban traffic variables: Bifurcations, multivaluedness and instability

Author

Listed:
  • Daganzo, Carlos F.
  • Gayah, Vikash V.
  • Gonzales, Eric J.

Abstract

Recent experimental work has shown that the average flow and average density within certain urban networks are related by a unique, reproducible curve known as the Macroscopic Fundamental Diagram (MFD). For networks consisting of a single route this MFD can be predicted analytically; but when the networks consist of multiple overlapping routes experience shows that the flows observed in congestion for a given density are less than those one would predict if the routes were homogeneously congested and did not overlap. These types of networks also tend to jam at densities that are only a fraction of their routes' average jam density. This paper provides an explanation for these phenomena. It shows that, even for perfectly homogeneous networks with spatially uniform travel patterns, symmetric equilibrium patterns with equal flows and densities across all links are unstable if the average network density is sufficiently high. Instead, the stable equilibrium patterns are asymmetric. For this reason the networks jam at lower densities and exhibit lower flows than one would predict if traffic was evenly distributed. Analysis of small idealized networks that can be treated as simple dynamical systems shows that these networks undergo a bifurcation at a network-specific critical density such that for lower densities the MFDs have predictably high flows and are univalued, and for higher densities the order breaks down. Microsimulations show that this bifurcation also manifests itself in large symmetric networks. In this case though, the bifurcation is more pernicious: once the network density exceeds the critical value, the stable state is one of complete gridlock with zero flow. It is therefore important to ensure in real-world applications that a network's density never be allowed to approach this critical value. Fortunately, analysis shows that the bifurcation's critical density increases considerably if some of the drivers choose their routes adaptively in response to traffic conditions. So far, for networks with adaptive drivers, bifurcations have only been observed in simulations, but not (yet) in real life. This could be because real drivers are more adaptive than simulated drivers and/or because the observed real networks were not sufficiently congested.

Suggested Citation

  • Daganzo, Carlos F. & Gayah, Vikash V. & Gonzales, Eric J., 2011. "Macroscopic relations of urban traffic variables: Bifurcations, multivaluedness and instability," Transportation Research Part B: Methodological, Elsevier, vol. 45(1), pages 278-288, January.
  • Handle: RePEc:eee:transb:v:45:y:2011:i:1:p:278-288
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0191-2615(10)00095-0
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Geroliminis, Nikolas & Daganzo, Carlos F., 2008. "Existence of urban-scale macroscopic fundamental diagrams: Some experimental findings," Transportation Research Part B: Methodological, Elsevier, vol. 42(9), pages 759-770, November.
    2. Daganzo, Carlos F. & Geroliminis, Nikolas, 2008. "An analytical approximation for the macroscopic fundamental diagram of urban traffic," Transportation Research Part B: Methodological, Elsevier, vol. 42(9), pages 771-781, November.
    3. Gonzales, Eric J. & Chavis, Celeste & Li, Yuwei & Daganzo, Carlos F., 2009. "Multimodal Transport Modeling for Nairobi, Kenya: Insights and Recommendations with an Evidence-Based Model," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt6dv195p7, Institute of Transportation Studies, UC Berkeley.
    4. Daganzo, Carlos F., 2006. "In traffic flow, cellular automata = kinematic waves," Transportation Research Part B: Methodological, Elsevier, vol. 40(5), pages 396-403, June.
    5. Daganzo, Carlos F., 2007. "Urban gridlock: Macroscopic modeling and mitigation approaches," Transportation Research Part B: Methodological, Elsevier, vol. 41(1), pages 49-62, January.
    Full references (including those not matched with items on IDEAS)

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:45:y:2011:i:1:p:278-288. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.