IDEAS home Printed from https://ideas.repec.org/p/cdl/itsrrp/qt2xq3b0xs.html
   My bibliography  Save this paper

Spatial and Temporal Utility Modeling to Increase Transit Ridership

Author

Listed:
  • Church, Richard L.
  • Noronha, Val
  • Lei, Ting
  • Corrigan, Wils
  • Burbidge, Shaunna
  • Marston, Jim

Abstract

The objective of this research project was to develop a better understanding of the possible alternatives that a large employment center, like the University of California at Santa Barbara, can adopt in order to better utilize transit, mitigate traffic, and reduce demand for on-site parking. Although this project was oriented to the UCSB campus, the techniques and approaches developed in this project were designed to be equally applicable elsewhere. There were three major elements of this project: 1) develop an understanding of commuting employees through the use of a survey, 2) identify spatially whether there exist areas in which transit service is competitive or nearly so to the use of the single occupant vehicle (SOV), and 3) identify whether there are areas in which special express bus routes could provide competitive access to the University. The survey involved more than 2300 university students, faculty, and staff. The survey revealed a number of important points including that nearly 30% of the staff and faculty have never used transit, do not know where their nearest route or bus stop is, and have no knowledge of how to obtain such information. It is clear that converting some employees to using transit will require both incentives and better information. The project also identified a number of other important features of those commuting to work at the University, including the fact that most go directly to and from work without making multi-purpose trips. This fact alone makes it easier to develop special express bus routes to serve the University or convert employees to transit riders. The survey also revealed that a sizable minority ride their bikes to the University. Although data from the survey could not be used to show that there is a statistically significant pattern of ridership within the context of access to Class 1 bike routes, there is reason to believe that a more comprehensive study might reveal whether this occurs. Such a finding could help in understanding the role of bikes in commuting to work, when safe routes are available. The project also focused on the provision of transit services by mapping access times in the journey to the University and the journey to home from the University. Overall, access times are quite large, especially when comparing transit service times to that of using a personal vehicle. As a part of this research, a methodology was developed to map access times, using bus routes, schedules, and time of day. The model identifies for all areas of a region surrounding a large employment center, approximate combined walk and transit travel times. Mapping the ratio of transit service times to personal vehicle travel times to the University, allows one to map those areas where transit service is competitive to using a personal vehicle (i.e. ratio is close to or less than 1). Map results tend to indicate that most of the south coast region is poorly served by transit when commuting directly to the University, where the public transit trip takes at least twice the time as compared to using a personal vehicle. There are, however, some areas that are served with good access to the University; a program might be designed to encourage those residents who live in such areas to use transit. Finally, a special routing model was developed that can be used to design express bus service routes. This model was applied to the South Coast Region about the University, and several routes of high employee coverage were identified. Express routes that are relatively short and which could potentially serve a large number of university employees with commuting service to and from the University may make it possible to reduce SOV trips to the University. All of the tools developed as a part of this project were designed within the context of future application at other centers of large employment. This research was supported by the California Partners in Advanced Transit and Highways (PATH) under Grant Number SA4318 from the University of California, Berkeley, funded by the California Department of Transportation under Agreement Number 65A0161.

Suggested Citation

  • Church, Richard L. & Noronha, Val & Lei, Ting & Corrigan, Wils & Burbidge, Shaunna & Marston, Jim, 2005. "Spatial and Temporal Utility Modeling to Increase Transit Ridership," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt2xq3b0xs, Institute of Transportation Studies, UC Berkeley.
  • Handle: RePEc:cdl:itsrrp:qt2xq3b0xs
    as

    Download full text from publisher

    File URL: https://www.escholarship.org/uc/item/2xq3b0xs.pdf;origin=repeccitec
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Murray, Alan T., 2001. "Strategic analysis of public transport coverage," Socio-Economic Planning Sciences, Elsevier, vol. 35(3), pages 175-188, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alessandro Vitale & Giuseppe Guido & Daniele Rogano, 2016. "A smartphone based DSS platform for assessing transit service attributes," Public Transport, Springer, vol. 8(2), pages 315-340, September.
    2. Zuiyi Shen & Qianqian Zhao & Qimin Fang, 2021. "Analysis of Green Traffic Development in Zhoushan Based on Entropy Weight TOPSIS," Sustainability, MDPI, vol. 13(14), pages 1-13, July.
    3. Hector G. LOPEZ-RUIZ & Panayotis CHRISTIDIS & Hande DEMIREL & Mert KOMPIL, 2013. "Quantifying the Effects of Sustainable Urban Mobility Plans," JRC Research Reports JRC84116, Joint Research Centre.
    4. Nkurunziza, Alphonse & Zuidgeest, Mark & Brussel, Mark & Van den Bosch, Frans, 2012. "Spatial variation of transit service quality preferences in Dar-es-Salaam," Journal of Transport Geography, Elsevier, vol. 24(C), pages 12-21.
    5. Ferreira, João-Pedro & Barata, Eduardo & Ramos, Pedro Nogueira & Cruz, Luis, 2014. "Economic, social, energy and environmental assessment of inter-municipality commuting: The case of Portugal," Energy Policy, Elsevier, vol. 66(C), pages 411-418.
    6. Hugo M. Repolho & António P. Antunes & Richard L. Church, 2013. "Optimal Location of Railway Stations: The Lisbon-Porto High-Speed Rail Line," Transportation Science, INFORMS, vol. 47(3), pages 330-343, August.
    7. Matisziw, Timothy C. & Murray, Alan T. & Kim, Changjoo, 2006. "Strategic route extension in transit networks," European Journal of Operational Research, Elsevier, vol. 171(2), pages 661-673, June.
    8. Wang, Donggen & Cao, Xinyu, 2017. "Impacts of the built environment on activity-travel behavior: Are there differences between public and private housing residents in Hong Kong?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 103(C), pages 25-35.
    9. Piotr Kaszczyszyn & Natalia Sypion-Dutkowska, 2019. "Walking Access to Public Transportation Stops for City Residents. A Comparison of Methods," Sustainability, MDPI, vol. 11(14), pages 1-13, July.
    10. Curtin, Kevin M. & Biba, Steve, 2011. "The Transit Route Arc-Node Service Maximization problem," European Journal of Operational Research, Elsevier, vol. 208(1), pages 46-56, January.
    11. Christoph Stallkamp & Florian Diehlmann & Markus Lüttenberg & Marcus Wiens & Rebekka Volk & Frank Schultmann, 2022. "On the combination of water emergency wells and mobile treatment systems: a case study of the city of Berlin," Annals of Operations Research, Springer, vol. 319(1), pages 259-290, December.
    12. Tzay-An Shiau & Ching-Shuan Lee, 2017. "Measuring Network-Based Public Transit Performance Using Fuzzy Measures and Fuzzy Integrals," Sustainability, MDPI, vol. 9(5), pages 1-16, April.
    13. Emilio Carrizosa & Jonas Harbering & Anita Schöbel, 2016. "Minimizing the passengers’ traveling time in the stop location problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 67(10), pages 1325-1337, October.
    14. Pludow, B. Amelia & Murray, Alan T. & Church, Richard L., 2022. "Service quality modeling to support optimizing facility location in a microscale environment," Socio-Economic Planning Sciences, Elsevier, vol. 82(PB).
    15. Nassir, Neema & Hickman, Mark & Malekzadeh, Ali & Irannezhad, Elnaz, 2016. "A utility-based travel impedance measure for public transit network accessibility," Transportation Research Part A: Policy and Practice, Elsevier, vol. 88(C), pages 26-39.
    16. Grubesic, Tony H. & Matisziw, Timothy C. & Murray, Alan T., 2012. "Assessing geographic coverage of the essential air service program," Socio-Economic Planning Sciences, Elsevier, vol. 46(2), pages 124-135.
    17. Galazova S.S. & Kalieva O.M. & Luzhnova N.V. & Karelin N.V., 2020. "Opportunities and Constraints in Implementing Innovation Marketing in the Urban Passenger Traffic," International Journal of Economics & Business Administration (IJEBA), International Journal of Economics & Business Administration (IJEBA), vol. 0(Special 1), pages 98-104.
    18. Maghrour Zefreh, Mohammad & Saif, Muhammad Atiullah & Esztergár-Kiss, Domokos & Torok, Adam, 2023. "A data-driven decision support tool for public transport service analysis and provision," Transport Policy, Elsevier, vol. 135(C), pages 82-90.
    19. Vitor Ribeiro & Paula Remoaldo & Javier Gutiérrez, 2014. "Mapping transport disadvantages of elderly people in relation to access to bus stops: contribution of geographic information systems," Chapters, in: Ana Condeço-Melhorado & Aura Reggiani & Javier Gutiérrez (ed.), Accessibility and Spatial Interaction, chapter 8, pages 156-174, Edward Elgar Publishing.
    20. Mamun, Sha A. & Lownes, Nicholas E. & Osleeb, Jeffrey P. & Bertolaccini, Kelly, 2013. "A method to define public transit opportunity space," Journal of Transport Geography, Elsevier, vol. 28(C), pages 144-154.

    More about this item

    Keywords

    Engineering;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cdl:itsrrp:qt2xq3b0xs. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Lisa Schiff (email available below). General contact details of provider: https://edirc.repec.org/data/itucbus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.