IDEAS home Printed from https://ideas.repec.org/p/cab/wpaefr/13.html
   My bibliography  Save this paper

Measuring market risk: a copula and extreme value approach

Author

Listed:
  • Alexandru Stanga

Abstract

This paper presents a methodology for measuring the risk of a portfolio composed of assets with heteroscedastic return series. In order to obtain good estimates for Value-at-Risk and Expected Shortfall, the model tries to capture as realistically as possible the data generating process for each return series and also the dependence structure that exists at the portfolio level. For this purpose, the individual return series are modelled using GARCH methods with semi-parametric innovations and the dependence structure is defined with the help of a Student t copula. The model built with these techniques is then used for the simulation of a portfolio return distribution that allows the estimation of the risk measures. This methodology is applied to a portfolio of five Romanian stocks and the accuracy of the risk measures is then tested using a backtesting procedure.

Suggested Citation

  • Alexandru Stanga, 2008. "Measuring market risk: a copula and extreme value approach," Advances in Economic and Financial Research - DOFIN Working Paper Series 13, Bucharest University of Economics, Center for Advanced Research in Finance and Banking - CARFIB.
  • Handle: RePEc:cab:wpaefr:13
    as

    Download full text from publisher

    File URL: http://www.dofin.ase.ro/Working%20papers/Stanga%20Alexandru/alexandru.stanga.dissertation.pdf
    File Function: First version, 2008
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Cotter, John & Dowd, Kevin, 2006. "Extreme spectral risk measures: An application to futures clearinghouse margin requirements," Journal of Banking & Finance, Elsevier, vol. 30(12), pages 3469-3485, December.
    2. Rosenberg, Joshua V. & Schuermann, Til, 2006. "A general approach to integrated risk management with skewed, fat-tailed risks," Journal of Financial Economics, Elsevier, vol. 79(3), pages 569-614, March.
    3. Longin, Francois M., 2000. "From value at risk to stress testing: The extreme value approach," Journal of Banking & Finance, Elsevier, vol. 24(7), pages 1097-1130, July.
    4. Tae-Hwy Lee & Yong Bao & Burak Saltoglu, 2006. "Evaluating predictive performance of value-at-risk models in emerging markets: a reality check," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 25(2), pages 101-128.
    5. L. K. Hotta & E. C. Lucas & H. P Palaro, 2008. "Estimation of VaR Using Copula and Extreme Value Theory," Multinational Finance Journal, Multinational Finance Journal, vol. 12(3-4), pages 205-218, September.
    6. Bouye, Eric & Durlleman, Valdo & Nikeghbali, Ashkan & Riboulet, Gaël & Roncalli, Thierry, 2000. "Copulas for finance," MPRA Paper 37359, University Library of Munich, Germany.
    7. Alejandro García & Ramazan Gençay, 2006. "Risk-Cost Frontier and Collateral Valuation in Securities Settlement Systems for Extreme Market Events," Staff Working Papers 06-17, Bank of Canada.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marco Rocco, 2011. "Extreme value theory for finance: a survey," Questioni di Economia e Finanza (Occasional Papers) 99, Bank of Italy, Economic Research and International Relations Area.
    2. James M. O'Brien & Pawel J. Szerszen, 2014. "An Evaluation of Bank VaR Measures for Market Risk During and Before the Financial Crisis," Finance and Economics Discussion Series 2014-21, Board of Governors of the Federal Reserve System (U.S.).
    3. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2013. "Financial Risk Measurement for Financial Risk Management," Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, volume 2, chapter 0, pages 1127-1220, Elsevier.
    4. Kole, Erik & Koedijk, Kees & Verbeek, Marno, 2007. "Selecting copulas for risk management," Journal of Banking & Finance, Elsevier, vol. 31(8), pages 2405-2423, August.
    5. Liu, Qingfu & An, Yunbi, 2014. "Risk contributions of trading and non-trading hours: Evidence from Chinese commodity futures markets," Pacific-Basin Finance Journal, Elsevier, vol. 30(C), pages 17-29.
    6. James Ming Chen, 2018. "On Exactitude in Financial Regulation: Value-at-Risk, Expected Shortfall, and Expectiles," Risks, MDPI, vol. 6(2), pages 1-28, June.
    7. O’Brien, James & Szerszeń, Paweł J., 2017. "An evaluation of bank measures for market risk before, during and after the financial crisis," Journal of Banking & Finance, Elsevier, vol. 80(C), pages 215-234.
    8. Jian Zhou & Randy Anderson, 2012. "Extreme Risk Measures for International REIT Markets," The Journal of Real Estate Finance and Economics, Springer, vol. 45(1), pages 152-170, June.
    9. Kevin Dowd & John Cotter, 2011. "Intra-Day Seasonality in Foreign Market Transactions," Working Papers 200746, Geary Institute, University College Dublin.
    10. Douglas D. Evanoff & Daniela Russo & Robert Steigerwald, 2006. "Policymakers, researchers, and practitioners discuss the role of central counterparties," Economic Perspectives, Federal Reserve Bank of Chicago, vol. 30(Q IV), pages 2-21.
    11. Borer, Daniel & Perera, Devmali & Fauzi, Fitriya & Chau, Trinh Nguyen, 2023. "Identifying systemic risk of assets during international financial crises using Value at Risk elasticities," International Review of Financial Analysis, Elsevier, vol. 90(C).
    12. Kole, H.J.W.G. & Koedijk, C.G. & Verbeek, M.J.C.M., 2003. "Stress Testing with Student's t Dependence," ERIM Report Series Research in Management ERS-2003-056-F&A, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    13. Charles-Olivier Amédée-Manesme & Fabrice Barthélémy & Didier Maillard, 2019. "Computation of the corrected Cornish–Fisher expansion using the response surface methodology: application to VaR and CVaR," Annals of Operations Research, Springer, vol. 281(1), pages 423-453, October.
    14. Bekiros, Stelios D. & Georgoutsos, Dimitris A., 2005. "Estimation of Value-at-Risk by extreme value and conventional methods: a comparative evaluation of their predictive performance," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 15(3), pages 209-228, July.
    15. Ibrahim Ergen, 2015. "Two-step methods in VaR prediction and the importance of fat tails," Quantitative Finance, Taylor & Francis Journals, vol. 15(6), pages 1013-1030, June.
    16. Chun-Pin Hsu & Chin-Wen Huang & Wan-Jiun Chiou, 2012. "Effectiveness of copula-extreme value theory in estimating value-at-risk: empirical evidence from Asian emerging markets," Review of Quantitative Finance and Accounting, Springer, vol. 39(4), pages 447-468, November.
    17. Robert A. Jones & Christophe Pérignon, 2013. "Derivatives Clearing, Default Risk, and Insurance," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 80(2), pages 373-400, June.
    18. Nieto, Maria Rosa & Ruiz, Esther, 2016. "Frontiers in VaR forecasting and backtesting," International Journal of Forecasting, Elsevier, vol. 32(2), pages 475-501.
    19. Kai Schindelhauer & Chen Zhou, 2018. "Value-at-Risk prediction using option-implied risk measures," DNB Working Papers 613, Netherlands Central Bank, Research Department.
    20. Kellner, Ralf & Gatzert, Nadine, 2013. "Estimating the basis risk of index-linked hedging strategies using multivariate extreme value theory," Journal of Banking & Finance, Elsevier, vol. 37(11), pages 4353-4367.

    More about this item

    Keywords

    Value-at-Risk;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cab:wpaefr:13. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ciprian Necula (email available below). General contact details of provider: https://edirc.repec.org/data/caasero.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.