A credit risk model for Italian SMEs
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Barniv, Ran & McDonald, James B, 1999. "Review of Categorical Models for Classification Issues in Accounting and Finance," Review of Quantitative Finance and Accounting, Springer, vol. 13(1), pages 39-62, July.
- Fabrizio Fabi & Sebastiano Laviola & Paolo Marullo Reedtz, 2004. "The treatment of SMEs loans in the New Basel Capital Accord: some evaluations," Banca Nazionale del Lavoro Quarterly Review, Banca Nazionale del Lavoro, vol. 57(228), pages 29-70.
- Altman, Edward I. & Marco, Giancarlo & Varetto, Franco, 1994. "Corporate distress diagnosis: Comparisons using linear discriminant analysis and neural networks (the Italian experience)," Journal of Banking & Finance, Elsevier, vol. 18(3), pages 505-529, May.
- Altman, Edward I. & Haldeman, Robert G. & Narayanan, P., 1977. "ZETATM analysis A new model to identify bankruptcy risk of corporations," Journal of Banking & Finance, Elsevier, vol. 1(1), pages 29-54, June.
- Jesús Saurina & Carlos Trucharte, 2004. "The Impact of Basel II on Lending to Small- and Medium-Sized Firms: A Regulatory Policy Assessment Based on Spanish Credit Register Data," Journal of Financial Services Research, Springer;Western Finance Association, vol. 26(2), pages 121-144, October.
- Edward I. Altman, 1968. "Financial Ratios, Discriminant Analysis And The Prediction Of Corporate Bankruptcy," Journal of Finance, American Finance Association, vol. 23(4), pages 589-609, September.
- Fabrizio Fabi & Sebastiano Laviola & Paolo Marullo Reedtz, 2004. "The treatment of SMEs loans in the New Basel Capital Accord: some evaluations," BNL Quarterly Review, Banca Nazionale del Lavoro, vol. 57(228), pages 29-70.
- Edward I. Altman, 1968. "The Prediction Of Corporate Bankruptcy: A Discriminant Analysis," Journal of Finance, American Finance Association, vol. 23(1), pages 193-194, March.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Anna Burova & Henry Penikas & Svetlana Popova, 2021.
"Probability of Default Model to Estimate Ex Ante Credit Risk,"
Russian Journal of Money and Finance, Bank of Russia, vol. 80(3), pages 49-72, September.
- Anna Burova & Henry Penikas & Svetlana Popova, 2020. "Probability of Default (PD) Model to Estimate Ex Ante Credit Risk," Bank of Russia Working Paper Series wps66, Bank of Russia.
- Nur Adiana Hiau Abdullah & Muhammad M. Ma'aji & Karren Lee-Hwei Khaw, 2016. "The Value of Governance Variables in Predicting Financial Distress Among Small and Medium-Sized Enterprises in Malaysia," Asian Academy of Management Journal of Accounting and Finance (AAMJAF), Penerbit Universiti Sains Malaysia, vol. 12(Suppl. 1), pages 1-77–91.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Zhichao Luo & Pingyu Hsu & Ni Xu, 2020. "SME Default Prediction Framework with the Effective Use of External Public Credit Data," Sustainability, MDPI, vol. 12(18), pages 1-18, September.
- Altman, Edward I. & Saunders, Anthony, 1997.
"Credit risk measurement: Developments over the last 20 years,"
Journal of Banking & Finance, Elsevier, vol. 21(11-12), pages 1721-1742, December.
- Edward I. Altman & Anthony Saunders, 1996. "Credit Risk Measurement: Developments over the Last 20 Years," New York University, Leonard N. Stern School Finance Department Working Paper Seires 96-3, New York University, Leonard N. Stern School of Business-.
- du Jardin, Philippe & Séverin, Eric, 2011.
"Predicting corporate bankruptcy using a self-organizing map: An empirical study to improve the forecasting horizon of a financial failure model,"
MPRA Paper
44262, University Library of Munich, Germany.
- P. Du Jardin & E. Séverin, 2011. "Predicting Corporate Bankruptcy Using Self-Organising map: An empirical study to Improve the Forecasting horizon of financial failure model," Post-Print hal-00801878, HAL.
- Sebastian Klaudiusz Tomczak & Edward Radosiński, 2017. "The effectiveness of discriminant models based on the example of the manufacturing sector," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 27(3), pages 81-97.
- Michael Doumpos & Constantin Zopounidis, 1999. "A Multicriteria Discrimination Method for the Prediction of Financial Distress: The Case of Greece," Multinational Finance Journal, Multinational Finance Journal, vol. 3(2), pages 71-101, June.
- Tang, Lingxiao & Cai, Fei & Ouyang, Yao, 2019. "Applying a nonparametric random forest algorithm to assess the credit risk of the energy industry in China," Technological Forecasting and Social Change, Elsevier, vol. 144(C), pages 563-572.
- Raffaella Calabrese & Silvia Angela Osmetti, 2011. "Generalized Extreme Value Regression for Binary Rare Events Data: an Application to Credit Defaults," Working Papers 201120, Geary Institute, University College Dublin.
- Fayçal Mraihi, 2016. "Distressed Company Prediction Using Logistic Regression: Tunisian’s Case," Quarterly Journal of Business Studies, Research Academy of Social Sciences, vol. 2(1), pages 34-54.
- Kolari, James & Glennon, Dennis & Shin, Hwan & Caputo, Michele, 2002. "Predicting large US commercial bank failures," Journal of Economics and Business, Elsevier, vol. 54(4), pages 361-387.
- Ha-Thu Nguyen, 2015. "How is credit scoring used to predict default in China?," EconomiX Working Papers 2015-1, University of Paris Nanterre, EconomiX.
- Parag C. Pendharkar, 2011. "Probabilistic Approaches For Credit Screening And Bankruptcy Prediction," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 18(4), pages 177-193, October.
- Van Laere, Elisabeth & Baesens, Bart, 2010. "The development of a simple and intuitive rating system under Solvency II," Insurance: Mathematics and Economics, Elsevier, vol. 46(3), pages 500-510, June.
- Peresetsky, A. A., 2011. "What factors drive the Russian banks license withdrawal," MPRA Paper 41507, University Library of Munich, Germany.
- Şaban Çelik, 2013. "Micro Credit Risk Metrics: A Comprehensive Review," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 20(4), pages 233-272, October.
- Mramor, Dusan & Valentincic, Aljosa, 2003. "Forecasting the liquidity of very small private companies," Journal of Business Venturing, Elsevier, vol. 18(6), pages 745-771, November.
- Evangelos C. Charalambakis, 2015.
"On the Prediction of Corporate Financial Distress in the Light of the Financial Crisis: Empirical Evidence from Greek Listed Firms,"
International Journal of the Economics of Business, Taylor & Francis Journals, vol. 22(3), pages 407-428, November.
- Evangelos C. Charalambakis, 2013. "On the prediction of corporate financial distress in the light of the financial crisis: empirical evidence from Greek listed firms," Working Papers 164, Bank of Greece.
- repec:ctc:sdimse:dime21_01 is not listed on IDEAS
- Santosh Kumar Shrivastav & P. Janaki Ramudu, 2020. "Bankruptcy Prediction and Stress Quantification Using Support Vector Machine: Evidence from Indian Banks," Risks, MDPI, vol. 8(2), pages 1-22, May.
- Ravi Kumar, P. & Ravi, V., 2007. "Bankruptcy prediction in banks and firms via statistical and intelligent techniques - A review," European Journal of Operational Research, Elsevier, vol. 180(1), pages 1-28, July.
- du Jardin, Philippe, 2010. "Predicting bankruptcy using neural networks and other classification methods: the influence of variable selection techniques on model accuracy," MPRA Paper 44375, University Library of Munich, Germany.
- du Jardin, Philippe, 2012. "The influence of variable selection methods on the accuracy of bankruptcy prediction models," MPRA Paper 44383, University Library of Munich, Germany.
More about this item
NEP fields
This paper has been announced in the following NEP Reports:- NEP-FMK-2007-11-24 (Financial Markets)
- NEP-RMG-2007-11-24 (Risk Management)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bol:bodewp:600. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Dipartimento Scienze Economiche, Universita' di Bologna (email available below). General contact details of provider: https://edirc.repec.org/data/sebolit.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.