IDEAS home Printed from https://ideas.repec.org/p/boc/scon17/5.html
   My bibliography  Save this paper

Now You See Me: High School Dropout and Machine Learning

Author

Listed:
  • Dario Sansone

    (Georgetown University)

Abstract

In this paper, we create an algorithm to predict which students are eventually going to drop out of US high school using information available in 9th grade. We show that using a naive model - as implemented in many schools - leads to poor predictions. In addition to this, we explain how schools can obtain more precise predictions by exploiting the big data available to them, as well as more sophisticated quantitative techniques. We also compare the performances of econometric techniques like Logistic Regression with Machine Learning tools such as Support Vector Machine, Boosting and LASSO. We offer practical advice on how to apply the new Machine Learning codes available in Stata to the high dimensional datasets available in education. Model parameters are calibrated by taking into account policy goals and budget constraints.

Suggested Citation

  • Dario Sansone, 2017. "Now You See Me: High School Dropout and Machine Learning," 2017 Stata Conference 5, Stata Users Group.
  • Handle: RePEc:boc:scon17:5
    as

    Download full text from publisher

    File URL: http://fmwww.bc.edu/repec/scon2017/Baltimore17_Sansone.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. McKenzie, David & Sansone, Dario, 2019. "Predicting entrepreneurial success is hard: Evidence from a business plan competition in Nigeria," Journal of Development Economics, Elsevier, vol. 141(C).

    More about this item

    JEL classification:

    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • C55 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Large Data Sets: Modeling and Analysis
    • I20 - Health, Education, and Welfare - - Education - - - General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:boc:scon17:5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Christopher F Baum (email available below). General contact details of provider: https://edirc.repec.org/data/stataea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.