IDEAS home Printed from https://ideas.repec.org/p/bge/wpaper/358.html
   My bibliography  Save this paper

A Dynamic Analysis of Human Welfare in a Warming Planet

Author

Listed:
  • Humberto Llavador
  • John E. Roemer
  • Joaquim Silvestre

Abstract

Anthropogenic greenhouse gas (GHG) emissions have caused atmospheric concentrations with no precedents in the last half a million years, inducing serious uncertainties about future climates and their effects on human welfare. Recent climate science supports the view that the climate stabilization will require very low GHG emissions in the future. We ask: Is a path of low emissions compatible with sustainable levels of human welfare? With steady growth in human quality of life? Addressing these questions requires both defining welfare criteria and empirically estimating the possible paths of the economy. We specify and calibrate a dynamic model with four intertemporal links: education, physical capital, knowledge and the environment. In line with Nordhaus (2008a) and with the Stern Review (2007), we assume that GHG emissions allow increased production, while a higher stock of atmospheric carbon decreases production. Our index of human welfare, which we call quality of life (QuoL), emphasizes education, knowledge, and the environment, affected by greenhouse gas emissions, in addition to consumption and leisure. Thus, we avoid a Consumptionist Fallacy - that welfare depends only on commodityconsumption and perhaps leisure. We reject discounted utilitarianism as a normative criterion, and consider two alternatives. The first is an intergenerational maximin criterion, which maximizes the quality of life of the first generation subject to maintaining at least that level for all successive generations. The second is human development optimization, that seeks the maximization of the QuoL of the first generation subject to achieving a given, constant rate of growth in all subsequent generations. Hence, our analysis focuses on a human notion of sustainability, as opposed to the conventional "green" sustainability, limited to keeping the quality of the environment constant. Because our dynamic optimization programs defy explicit analytical solutions, our approach has been computational. As a benchmark, we consider a simple model with physical and human capital, for which we prove a turnpike theorem. We then devise a computational algorithm inspired by the turnpike property to construct feasible, although not necessarily optimal, paths in the more complex and realistic model. Our analysis indicates that, with GHG emission paths entailing very low emissions in the future, positive rates of growth in QuoL are possible while the first generation experiences a QuoL higher than the historical reference level. We also observe a tradeoff between the quality of life of the first generation and the rate of growth in the quality of life. Yet Generation 1's sacrifice for the sake of a higher growth rate appears to be small. The paths that we compute involve investments in knowledge at noticeably higher levels than in the past.

Suggested Citation

  • Humberto Llavador & John E. Roemer & Joaquim Silvestre, 2008. "A Dynamic Analysis of Human Welfare in a Warming Planet," Working Papers 358, Barcelona Graduate School of Economics.
  • Handle: RePEc:bge:wpaper:358
    as

    Download full text from publisher

    File URL: http://www.barcelonagse.eu/sites/default/files/working_paper_pdfs/358revised.pdf
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Romer, Paul M, 1986. "Increasing Returns and Long-run Growth," Journal of Political Economy, University of Chicago Press, vol. 94(5), pages 1002-1037, October.
    2. Angel de la Fuente & Rafael Domenech, 2001. "Schooling Data, Technological Diffusion, and the Neoclassical Model," American Economic Review, American Economic Association, vol. 91(2), pages 323-327, May.
    3. John E. Roemer, 2005. "Intergenerational Justice and Sustainability under the Leximin Ethic," Cowles Foundation Discussion Papers 1512, Cowles Foundation for Research in Economics, Yale University.
    4. D. Gale Johnson, 2000. "Population, Food, and Knowledge," American Economic Review, American Economic Association, vol. 90(1), pages 1-14, March.
    5. Llavador, Humberto & Roemer, John E. & Silvestre, Joaquim, 2010. "Intergenerational justice when future worlds are uncertain," Journal of Mathematical Economics, Elsevier, vol. 46(5), pages 728-761, September.
    6. Joaquim Silvestre, 2002. "Progress and conservation under Rawls's maximin principle," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 19(1), pages 1-27.
    7. Nordhaus, William D, 1991. "To Slow or Not to Slow: The Economics of the Greenhouse Effect," Economic Journal, Royal Economic Society, vol. 101(407), pages 920-937, July.
    8. William D. Nordhaus, 2007. "A Review of the Stern Review on the Economics of Climate Change," Journal of Economic Literature, American Economic Association, vol. 45(3), pages 686-702, September.
    9. Salvador Ortigueira, 2000. "A dynamic analysis of an endogenous growth model with leisure," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 16(1), pages 43-62.
    10. Philip Oreopoulos & Kjell G. Salvanes, 2011. "Priceless: The Nonpecuniary Benefits of Schooling," Journal of Economic Perspectives, American Economic Association, vol. 25(1), pages 159-184, Winter.
    11. Jeffrey A. Krautkraemer, 1985. "Optimal Growth, Resource Amenities and the Preservation of Natural Environments," Review of Economic Studies, Oxford University Press, vol. 52(1), pages 153-169.
    12. Neumayer, Eric, 1999. "Global warming: discounting is not the issue, but substitutability is," Energy Policy, Elsevier, vol. 27(1), pages 33-43, January.
    13. Rebelo, Sergio, 1991. "Long-Run Policy Analysis and Long-Run Growth," Journal of Political Economy, University of Chicago Press, vol. 99(3), pages 500-521, June.
    14. Martin L. Weitzman, 2007. "A Review of the Stern Review on the Economics of Climate Change," Journal of Economic Literature, American Economic Association, vol. 45(3), pages 703-724, September.
    15. Daniel Kahneman & Alan B. Krueger, 2006. "Developments in the Measurement of Subjective Well-Being," Journal of Economic Perspectives, American Economic Association, vol. 20(1), pages 3-24, Winter.
    16. Gerlagh, Reyer & van der Zwaan, B. C. C., 2002. "Long-Term Substitutability between Environmental and Man-Made Goods," Journal of Environmental Economics and Management, Elsevier, vol. 44(2), pages 329-345, September.
    17. Arrow Kenneth J, 2007. "Global Climate Change: A Challenge to Policy," The Economists' Voice, De Gruyter, vol. 4(3), pages 1-5, June.
    18. Simon Dietz & Chris Hope & Nicholas Stern & Dimitri Zenghelis, 2007. "REFLECTIONS ON THE STERN REVIEW (1) A Robust Case for Strong Action to Reduce the Risks of Climate Change," World Economics, World Economics, 1 Ivory Square, Plantation Wharf, London, United Kingdom, SW11 3UE, vol. 8(1), pages 121-168, January.
    19. John Roemer, 2011. "The Ethics of Intertemporal Distribution in a Warming Planet," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 48(3), pages 363-390, March.
    20. Lucas, Robert Jr., 1988. "On the mechanics of economic development," Journal of Monetary Economics, Elsevier, vol. 22(1), pages 3-42, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. W. Botzen & Jeroen Bergh, 2014. "Specifications of Social Welfare in Economic Studies of Climate Policy: Overview of Criteria and Related Policy Insights," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 58(1), pages 1-33, May.
    2. Michele Lombardi & Roberto Veneziani, 2009. "Liberal Egalitarianism and the Harm Principle," Global COE Hi-Stat Discussion Paper Series gd09-078, Institute of Economic Research, Hitotsubashi University.
    3. Llavador, Humberto & Roemer, John E. & Silvestre, Joaquim, 2010. "Intergenerational justice when future worlds are uncertain," Journal of Mathematical Economics, Elsevier, vol. 46(5), pages 728-761, September.
    4. Cairns, Robert D. & Martinet, Vincent, 2014. "An environmental-economic measure of sustainable development," European Economic Review, Elsevier, vol. 69(C), pages 4-17.
    5. Humberto Llavador & John E. Roemer & Joaquim Silvestre, 2013. "Should we sustain? And if so, sustain what? Consumption or the quality of life?," Chapters,in: Handbook on Energy and Climate Change, chapter 30, pages 639-665 Edward Elgar Publishing.
    6. John Roemer, 2013. "Once More on Intergenerational Discounting in Climate-Change Analysis: Reply to Partha Dasgupta," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 56(1), pages 141-148, September.
    7. Matthew Adler & Nicolas Treich, 2015. "Prioritarianism and Climate Change," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 62(2), pages 279-308, October.
    8. Rozenberg, Julie & Vogt-Schilb, Adrien & Hallegatte, Stephane, 2013. "How capital-based instruments facilitate the transition toward a low-carbon economy : a tradeoff between optimality and acceptability," Policy Research Working Paper Series 6609, The World Bank.
    9. Humberto Llavador & John E. Roemer & Joaquim Silvestre, 2010. "North-South Convergence and the Allocation of CO2 Emissions," Working Papers 493, Barcelona Graduate School of Economics.
    10. Jan Siegmeier & Linus Mattauch & Max Franks & David Klenert & Anselm Schultes & Ottmar Edenhofer, 2015. "A Public Finance Perspective on Climate Policy: Six Interactions That May Enhance Welfare," Working Papers 2015.31, Fondazione Eni Enrico Mattei.
    11. Fleurbaey, Marc, 2015. "On sustainability and social welfare," Journal of Environmental Economics and Management, Elsevier, vol. 71(C), pages 34-53.
    12. Andreas Peichl & Nico Pestel, 2013. "Multidimensional Well‐Being at the Top: Evidence for Germany," Fiscal Studies, Institute for Fiscal Studies, vol. 34, pages 355-371, September.
    13. José-Manuel Giménez-Gómez & Jordi Teixidó-Figueras & Cori Vilella, 2016. "The global carbon budget: a conflicting claims problem," Climatic Change, Springer, vol. 136(3), pages 693-703, June.
    14. Gerlagh, Reyer, 2017. "Generous Sustainability," Ecological Economics, Elsevier, vol. 136(C), pages 94-100.
    15. Geir B. Asheim, 2017. "Sustainable growth," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 49(3), pages 825-848, December.
    16. repec:wly:econjl:v:126:y:2016:i:597:p:2173-2196 is not listed on IDEAS
    17. John Roemer, 2011. "The Ethics of Intertemporal Distribution in a Warming Planet," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 48(3), pages 363-390, March.
    18. Quaas, Martin F. & Bröcker, Johannes, 2016. "Substitutability and the social cost of carbon in a solvable growth model with irreversible climate change," Economics Working Papers 2016-09, Christian-Albrechts-University of Kiel, Department of Economics.
    19. Dieckhoener, Caroline & Hecking, Harald, 2012. "Greenhouse Gas Abatement Cost Curves of the Residential Heating Market – a Microeconomic Approach," EWI Working Papers 2012-16, Energiewirtschaftliches Institut an der Universitaet zu Koeln (EWI).
    20. repec:kap:enreec:v:68:y:2017:i:4:d:10.1007_s10640-016-0052-0 is not listed on IDEAS

    More about this item

    Keywords

    Quality of life; climate change; education; maximin; growth;

    JEL classification:

    • D63 - Microeconomics - - Welfare Economics - - - Equity, Justice, Inequality, and Other Normative Criteria and Measurement
    • O40 - Economic Development, Innovation, Technological Change, and Growth - - Economic Growth and Aggregate Productivity - - - General
    • O41 - Economic Development, Innovation, Technological Change, and Growth - - Economic Growth and Aggregate Productivity - - - One, Two, and Multisector Growth Models
    • Q50 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - General
    • Q54 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Climate; Natural Disasters and their Management; Global Warming
    • Q56 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Environment and Development; Environment and Trade; Sustainability; Environmental Accounts and Accounting; Environmental Equity; Population Growth

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bge:wpaper:358. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Bruno Guallar). General contact details of provider: http://edirc.repec.org/data/bargses.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.