IDEAS home Printed from https://ideas.repec.org/p/baf/cbafwp/cbafwp22170.html
   My bibliography  Save this paper

Whatever it Takes to Reach Net Zero Emissions Around 2050 and Limit Global Warming to 1.5c: The Cases of United States, China, European Union and Japan

Author

Listed:
  • Maria Nieto

Abstract

This paper analyzes the most recent NDCs as well as public political commitments of the US, China, the EU and Japan (56% of the world GHG emissions) to meet the goal of reaching the 2050 net zero emissions target necessary to limit global warming to the 1.5C. This analysis is made against the background of the transition pathways defined by the REMIND-MAgPIE 2.1-4.2 integrated assessment model for an orderly transition to reach that target. The commitments of US, China, the EU and Japan are not in line with the requirements to limit global warming. Only the EU seems to have an adequate, sufficiently detailed and legally binding strategy to fulfill that pledge. This finding is in line with the recent United Nations Report concluding that even with enhanced 2030 targets and the additional public statements, the world is on track for a temperature increase between 1.8-2.4C this century even assuming that every country puts in place effective policies that will fully achieve its set targets. In all four regions of the world and particularly in 2025-2030, the orderly transition to net zero around 2050 demands the highest investments in renewable energies for electricity, CCUS and energy efficiency. China, the most critical to reach global carbon neutrality, is by far the most highly dependent on CCUS and, more generally, on CDR technologies to reach the 2050 net zero target due to an energy mix dominated by fossil fuels.

Suggested Citation

  • Maria Nieto, 2022. "Whatever it Takes to Reach Net Zero Emissions Around 2050 and Limit Global Warming to 1.5c: The Cases of United States, China, European Union and Japan," BAFFI CAREFIN Working Papers 22170, BAFFI CAREFIN, Centre for Applied Research on International Markets Banking Finance and Regulation, Universita' Bocconi, Milano, Italy.
  • Handle: RePEc:baf:cbafwp:cbafwp22170
    as

    Download full text from publisher

    File URL: https://repec.unibocconi.it/baffic/baf/papers/cbafwp22170.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Felix Creutzig & Peter Agoston & Jan Christoph Goldschmidt & Gunnar Luderer & Gregory Nemet & Robert C. Pietzcker, 2017. "The underestimated potential of solar energy to mitigate climate change," Nature Energy, Nature, vol. 2(9), pages 1-9, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mustafa Majid Rashak Al-Fartoos & Anurag Roy & Tapas K. Mallick & Asif Ali Tahir, 2022. "A Short Review on Thermoelectric Glazing for Sustainable Built Environment," Energies, MDPI, vol. 15(24), pages 1-22, December.
    2. Santanu Kumar Dash & Suprava Chakraborty & Devaraj Elangovan, 2023. "A Brief Review of Hydrogen Production Methods and Their Challenges," Energies, MDPI, vol. 16(3), pages 1-17, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Trommsdorff, Max & Hopf, Michaela & Hörnle, Oliver & Berwind, Matthew & Schindele, Stephan & Wydra, Kerstin, 2023. "Can synergies in agriculture through an integration of solar energy reduce the cost of agrivoltaics? An economic analysis in apple farming," Applied Energy, Elsevier, vol. 350(C).
    2. Anand, B. & Shankar, R. & Murugavelh, S. & Rivera, W. & Midhun Prasad, K. & Nagarajan, R., 2021. "A review on solar photovoltaic thermal integrated desalination technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    3. Oyewo, Ayobami Solomon & Solomon, A.A. & Bogdanov, Dmitrii & Aghahosseini, Arman & Mensah, Theophilus Nii Odai & Ram, Manish & Breyer, Christian, 2021. "Just transition towards defossilised energy systems for developing economies: A case study of Ethiopia," Renewable Energy, Elsevier, vol. 176(C), pages 346-365.
    4. Gansukh, Zolboo, 2021. "Mongol dream beyond fossil fuels: Prosperity of greenification," Renewable Energy, Elsevier, vol. 171(C), pages 95-102.
    5. Bruninx, Kenneth & Ovaere, Marten & Gillingham, Kenneth & Delarue, Erik, 2019. "The unintended consequences of the EU ETS cancellation policy," MPRA Paper 96437, University Library of Munich, Germany.
    6. Katarzyna Cheba & Iwona Bąk, 2021. "Environmental Production Efficiency in the European Union Countries as a Tool for the Implementation of Goal 7 of the 2030 Agenda," Energies, MDPI, vol. 14(15), pages 1-19, July.
    7. Bogdanov, Dmitrii & Toktarova, Alla & Breyer, Christian, 2019. "Transition towards 100% renewable power and heat supply for energy intensive economies and severe continental climate conditions: Case for Kazakhstan," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    8. Adelina Jashari & Jana Lippelt & Marie-Theres von Schickfus, 2018. "Unexpected Rapid Fall of Wind and Solar Energy Prices: Backgrounds, Effects and Perspectives," CESifo Forum, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, vol. 19(02), pages 65-69, July.
    9. Hansen, Kenneth & Breyer, Christian & Lund, Henrik, 2019. "Status and perspectives on 100% renewable energy systems," Energy, Elsevier, vol. 175(C), pages 471-480.
    10. Yin, Hui & Zhou, Kaile, 2022. "Performance evaluation of China's photovoltaic poverty alleviation project using machine learning and satellite images," Utilities Policy, Elsevier, vol. 76(C).
    11. Thi Thu Em Vo & Hyeyoung Ko & Jun-Ho Huh & Namje Park, 2021. "Overview of Solar Energy for Aquaculture: The Potential and Future Trends," Energies, MDPI, vol. 14(21), pages 1-20, October.
    12. Christian Breyer & Mahdi Fasihi & Arman Aghahosseini, 2020. "Carbon dioxide direct air capture for effective climate change mitigation based on renewable electricity: a new type of energy system sector coupling," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 25(1), pages 43-65, January.
    13. Steffen, Bjarne, 2020. "Estimating the cost of capital for renewable energy projects," Energy Economics, Elsevier, vol. 88(C).
    14. Polzin, Friedemann & Sanders, Mark & Serebriakova, Alexandra, 2021. "Finance in global transition scenarios: Mapping investments by technology into finance needs by source," Energy Economics, Elsevier, vol. 99(C).
    15. Javier L'opez Prol & Wolf-Peter Schill, 2020. "The Economics of Variable Renewables and Electricity Storage," Papers 2012.15371, arXiv.org.
    16. Brindha Ramasubramanian & Rayavarapu Prasada Rao & Vijila Chellappan & Seeram Ramakrishna, 2022. "Towards Sustainable Fuel Cells and Batteries with an AI Perspective," Sustainability, MDPI, vol. 14(23), pages 1-27, November.
    17. Aghahosseini, Arman & Solomon, A.A. & Breyer, Christian & Pregger, Thomas & Simon, Sonja & Strachan, Peter & Jäger-Waldau, Arnulf, 2023. "Energy system transition pathways to meet the global electricity demand for ambitious climate targets and cost competitiveness," Applied Energy, Elsevier, vol. 331(C).
    18. Iwona Bąk & Anna Spoz & Magdalena Zioło & Marek Dylewski, 2021. "Dynamic Analysis of the Similarity of Objects in Research on the Use of Renewable Energy Resources in European Union Countries," Energies, MDPI, vol. 14(13), pages 1-24, July.
    19. Robert Vermeulen & Edo Schets & Melanie Lohuis & Barbara Kolbl & David-Jan Jansen & Willem Heeringa, 2018. "An energy transition risk stress test for the financial system of the Netherlands," DNB Occasional Studies 1607, Netherlands Central Bank, Research Department.
    20. Beuse, Martin & Dirksmeier, Mathias & Steffen, Bjarne & Schmidt, Tobias S., 2020. "Profitability of commercial and industrial photovoltaics and battery projects in South-East-Asia," Applied Energy, Elsevier, vol. 271(C).

    More about this item

    Keywords

    Environment; international public goods; environmental economics-technological innovation;
    All these keywords.

    JEL classification:

    • F64 - International Economics - - Economic Impacts of Globalization - - - Environment
    • L38 - Industrial Organization - - Nonprofit Organizations and Public Enterprise - - - Public Policy
    • O44 - Economic Development, Innovation, Technological Change, and Growth - - Economic Growth and Aggregate Productivity - - - Environment and Growth
    • Q55 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Environmental Economics: Technological Innovation

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:baf:cbafwp:cbafwp22170. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Michela Pozzi (email available below). General contact details of provider: https://edirc.repec.org/data/cbbocit.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.