IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

An Ordinal Shapley Value for Economic Environments

We propose a new solution concept to address the problem of sharing a surplus among the agents generating it. The sharing problem is formulated in the preferences-endowments space. The solution is defined in a recursive manner incorporating notions of consistency and fairness and relying on properties satisfied by the Shapley value for Transferable Utility (TU) games. We show a solution exists, and refer to it as an Ordinal Shapley value (OSV). The OSV associates with each problem an allocation as well as a matrix of concessions ``measuring'' the gains each agent foregoes in favor of the other agents. We analyze the structure of the concessions, and show they are unique and symmetric. Next we characterize the OSV using the notion of coalitional dividends, and furthermore show it is monotone in an agent's initial endowments and satisfies anonymity. Finally, similarly to the weighted Shapley value for TU games, we construct a weighted OSV as well.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://pareto.uab.es/wp/2003/56003.pdf
Download Restriction: no

Paper provided by Unitat de Fonaments de l'Anàlisi Econòmica (UAB) and Institut d'Anàlisi Econòmica (CSIC) in its series UFAE and IAE Working Papers with number 560.03.

as
in new window

Length: 36
Date of creation: 28 Feb 2003
Date of revision:
Handle: RePEc:aub:autbar:560.03
Contact details of provider: Postal: 08193, Bellaterra, Barcelona
Phone: 34 93 592 1203
Fax: +34 93 542-1223
Web page: http://pareto.uab.cat
Email:


More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Sergiu Hart, 1983. "An Axiomatization of Harsanyi's Non-Transferable Utility Solution," Discussion Papers 573, Northwestern University, Center for Mathematical Studies in Economics and Management Science.
  2. McLean, Richard P. & Postlewaite, Andrew, 1989. "Excess functions and nucleolus allocations of pure exchange economies," Games and Economic Behavior, Elsevier, vol. 1(2), pages 131-143, June.
  3. Elisha A. Pazner & David Schmeidler, 1975. "Egalitarian Equivalent Allocations: A New Concept of Economic Equity," Discussion Papers 174, Northwestern University, Center for Mathematical Studies in Economics and Management Science.
  4. Crawford, Vincent P, 1979. "A Procedure for Generating Pareto-Efficient Egalitarian-Equivalent Allocations," Econometrica, Econometric Society, vol. 47(1), pages 49-60, January.
  5. Aumann, Robert J, 1985. "An Axiomatization of the Non-transferable Utility Value," Econometrica, Econometric Society, vol. 53(3), pages 599-612, May.
  6. O'Neill, Barry & Samet, Dov & Wiener, Zvi & Winter, Eyal, 2004. "Bargaining with an agenda," Games and Economic Behavior, Elsevier, vol. 48(1), pages 139-153, July.
  7. Sergiu Hart & Andreu Mas-Colell, 1994. "Bargaining and value," Economics Working Papers 114, Department of Economics and Business, Universitat Pompeu Fabra, revised Feb 1995.
  8. David Pérez-Castrillo & David Wettstein, . "Bidding For The Surplus: A Non-Cooperative Approach To The Shapley Value," UFAE and IAE Working Papers 461.00, Unitat de Fonaments de l'Anàlisi Econòmica (UAB) and Institut d'Anàlisi Econòmica (CSIC).
  9. Sprumont, Yves, 1990. "Population monotonic allocation schemes for cooperative games with transferable utility," Games and Economic Behavior, Elsevier, vol. 2(4), pages 378-394, December.
  10. Hart, Sergiu & Mas-Colell, Andreu, 1989. "Potential, Value, and Consistency," Econometrica, Econometric Society, vol. 57(3), pages 589-614, May.
  11. Demange, Gabrielle, 1984. "Implementing Efficient Egalitarian Equivalent Allocations," Econometrica, Econometric Society, vol. 52(5), pages 1167-77, September.
  12. Nicolo, Antonio & Perea, Andres, 2005. "Monotonicity and equal-opportunity equivalence in bargaining," Mathematical Social Sciences, Elsevier, vol. 49(2), pages 221-243, March.
  13. Perez-Castrillo, D. & Wettstein, D., 1999. "Bidding for the Surplus: a Non-Cooperative Approach to the Shapley Value. ation," Papers 24-99, Tel Aviv.
  14. Roger B. Myerson, 1978. "Conference Structures and Fair Allocation Rules," Discussion Papers 363, Northwestern University, Center for Mathematical Studies in Economics and Management Science.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:aub:autbar:560.03. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Xavier Vila)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.