IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

Accounting for outliers and calendar effects in surrogate simulations of stock return sequences

  • Alexandros Leontitsis
  • Constantinos E. Vorlow

Surrogate Data Analysis (SDA) is a statistical hypothesis testing framework for the determination of weak chaos in time series dynamics. Existing SDA procedures do not account properly for the rich structures observed in stock return sequences, attributed to the presence of heteroscedasticity, seasonal effects and outliers. In this paper we suggest a modification of the SDA framework, based on the robust estimation of location and scale parameters of mean-stationary time series and a probabilistic framework which deals with outliers. A demonstration on the NASDAQ Composite index daily returns shows that the proposed approach produces surrogates that faithfully reproduce the structure of the original series while being manifestations of linear-random dynamics.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://arxiv.org/pdf/physics/0504187
File Function: Latest version
Download Restriction: no

Paper provided by arXiv.org in its series Papers with number physics/0504187.

as
in new window

Length:
Date of creation: Apr 2005
Date of revision:
Handle: RePEc:arx:papers:physics/0504187
Contact details of provider: Web page: http://arxiv.org/

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Catherine Kyrtsou & Michel Terraza, 2003. "Is it Possible to Study Chaotic and ARCH Behaviour Jointly? Application of a Noisy Mackey–Glass Equation with Heteroskedastic Errors to the Paris Stock Exchange Returns Series," Computational Economics, Society for Computational Economics, vol. 21(3), pages 257-276, June.
  2. Fama, Eugene F, 1970. "Efficient Capital Markets: A Review of Theory and Empirical Work," Journal of Finance, American Finance Association, vol. 25(2), pages 383-417, May.
  3. Hsieh, David A, 1991. " Chaos and Nonlinear Dynamics: Application to Financial Markets," Journal of Finance, American Finance Association, vol. 46(5), pages 1839-77, December.
  4. Kyrtsou, Catherine & Terraza, Michel, 2002. "Stochastic chaos or ARCH effects in stock series?: A comparative study," International Review of Financial Analysis, Elsevier, vol. 11(4), pages 407-431.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:arx:papers:physics/0504187. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (arXiv administrators)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.