IDEAS home Printed from https://ideas.repec.org/p/arx/papers/cond-mat-0401053.html
   My bibliography  Save this paper

The Social Architecture of Capitalism

Author

Listed:
  • Ian Wright

Abstract

A dynamic model of the social relations between workers and capitalists is introduced. The model is deduced from the assumption that the law of value is an organising principle of modern economies. The model self-organises into a dynamic equilibrium with statistical properties that are in close qualitative and in many cases quantitative agreement with a broad range of known empirical distributions of developed capitalism, including the power-law distribution of firm size, the Laplace distribution of firm and GDP growth, the lognormal distribution of firm demises, the exponential distribution of the duration of recessions, the lognormal-Pareto distribution of income, and the gamma-like distribution of the rate-of-profit of firms. Normally these distributions are studied in isolation, but this model unifies and connects them within a single causal framework. In addition, the model generates business cycle phenomena, including fluctuating wage and profit shares in national income about values consistent with empirical studies. A testable consequence of the model is a conjecture that the rate-of-profit distribution is consistent with a parameter-mix of a ratio of normal variates with means and variances that depend on a firm size parameter that is distributed according to a power-law.

Suggested Citation

  • Ian Wright, 2004. "The Social Architecture of Capitalism," Papers cond-mat/0401053, arXiv.org, revised Mar 2011.
  • Handle: RePEc:arx:papers:cond-mat/0401053
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/cond-mat/0401053
    File Function: Latest version
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. De Fabritiis, G. & Pammolli, F. & Riccaboni, M., 2003. "On size and growth of business firms," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 324(1), pages 38-44.
    2. Ausloos, Marcel & Miśkiewicz, Janusz & Sanglier, Michèle, 2004. "The durations of recession and prosperity: does their distribution follow a power or an exponential law?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 339(3), pages 548-558.
    3. Jean-Philippe Bouchaud & Marc Mezard, 2000. "Wealth condensation in a simple model of economy," Science & Finance (CFM) working paper archive 500026, Science & Finance, Capital Fund Management.
    4. Fujiwara, Yoshi & Di Guilmi, Corrado & Aoyama, Hideaki & Gallegati, Mauro & Souma, Wataru, 2004. "Do Pareto–Zipf and Gibrat laws hold true? An analysis with European firms," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 335(1), pages 197-216.
    5. Adrian Dragulescu & Victor M. Yakovenko, 2000. "Statistical mechanics of money," Papers cond-mat/0001432, arXiv.org, revised Aug 2000.
    6. T. Di Matteo & T. Aste & S. T. Hyde, 2003. "Exchanges in complex networks: income and wealth distributions," Papers cond-mat/0310544, arXiv.org.
    7. Giulio Bottazzi & Angelo Secchi, 2006. "Explaining the distribution of firm growth rates," RAND Journal of Economics, RAND Corporation, vol. 37(2), pages 235-256, June.
    8. Youngki Lee & Luis A. N. Amaral & David Canning & Martin Meyer & H. Eugene Stanley, 1998. "Universal features in the growth dynamics of complex organizations," Papers cond-mat/9804100, arXiv.org.
    9. L. A. N. Amaral & S. V. Buldyrev & S. Havlin & H. Leschhorn & P. Maass & M. A. Salinger & H. E. Stanley & M. H. R. Stanley, 1997. "Scaling behavior in economics: I. Empirical results for company growth," Papers cond-mat/9702082, arXiv.org.
    10. Ormerod, Paul & Mounfield, Craig, 2001. "Power law distribution of the duration and magnitude of recessions in capitalist economies: breakdown of scaling," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 293(3), pages 573-582.
    11. Cook, William & Ormerod, Paul, 2003. "Power law distribution of the frequency of demises of US firms," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 324(1), pages 207-212.
    12. Gaffeo, Edoardo & Gallegati, Mauro & Palestrini, Antonio, 2003. "On the size distribution of firms: additional evidence from the G7 countries," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 324(1), pages 117-123.
    13. Gatti, Domenico Delli & Guilmi, Corrado Di & Gaffeo, Edoardo & Giulioni, Gianfranco & Gallegati, Mauro & Palestrini, Antonio, 2005. "A new approach to business fluctuations: heterogeneous interacting agents, scaling laws and financial fragility," Journal of Economic Behavior & Organization, Elsevier, vol. 56(4), pages 489-512, April.
    14. Ian Wright, 2008. "The Emergence of the Law of Value in a Dynamic Simple Commodity Economy," Review of Political Economy, Taylor & Francis Journals, vol. 20(3), pages 367-391.
    15. Adrian A. Dragulescu, 2003. "Applications of physics to economics and finance: Money, income, wealth, and the stock market," Papers cond-mat/0307341, arXiv.org, revised Jul 2003.
    16. Robert Axtell, 1999. "The Emergence of Firms in a Population of Agents," Working Papers 99-03-019, Santa Fe Institute.
    17. Anwar M. Shaikh, 1998. "The Empirical Strength of the Labour Theory of Value," Palgrave Macmillan Books, in: Riccardo Bellofiore (ed.), Marxian Economics: A Reappraisal, chapter 15, pages 225-251, Palgrave Macmillan.
    18. Adrian A. Dragulescu & Victor M. Yakovenko, 2002. "Statistical Mechanics of Money, Income, and Wealth: A Short Survey," Papers cond-mat/0211175, arXiv.org.
    19. Ian Wright, 2004. "A conjecture on the distribution of firm profit," Papers cond-mat/0407687, arXiv.org, revised Mar 2011.
    20. Levy, Moshe & Solomon, Sorin, 1997. "New evidence for the power-law distribution of wealth," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 242(1), pages 90-94.
    21. Reed, William J., 2001. "The Pareto, Zipf and other power laws," Economics Letters, Elsevier, vol. 74(1), pages 15-19, December.
    22. Reed, William J., 2003. "The Pareto law of incomes—an explanation and an extension," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 319(C), pages 469-486.
    23. Ormerod, Paul, 2002. "The US business cycle: power law scaling for interacting units with complex internal structure," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 314(1), pages 774-785.
    24. Bouchaud, Jean-Philippe & Mézard, Marc, 2000. "Wealth condensation in a simple model of economy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 282(3), pages 536-545.
    25. Wright, Ian, 2005. "The duration of recessions follows an exponential not a power law," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 345(3), pages 608-610.
    26. Canning, D. & Amaral, L. A. N. & Lee, Y. & Meyer, M. & Stanley, H. E., 1998. "Scaling the volatility of GDP growth rates," Economics Letters, Elsevier, vol. 60(3), pages 335-341, September.
    27. Amaral, L.A.N. & Gopikrishnan, P. & Plerou, V. & Stanley, H.E., 2001. "A model for the growth dynamics of economic organizations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 299(1), pages 127-136.
    28. S. V. Buldyrev & L. A. N. Amaral & S. Havlin & H. Leschhorn & P. Maass & M. A. Salinger & H. E. Stanley & M. H. R. Stanley, 1997. "Scaling behavior in economics: II. Modeling of company growth," Papers cond-mat/9702085, arXiv.org.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wright, Ian, 2009. "Implicit Microfoundations for Macroeconomics," Economics - The Open-Access, Open-Assessment E-Journal (2007-2020), Kiel Institute for the World Economy (IfW Kiel), vol. 3, pages 1-27.
    2. Gatti, Domenico Delli & Guilmi, Corrado Di & Gaffeo, Edoardo & Giulioni, Gianfranco & Gallegati, Mauro & Palestrini, Antonio, 2005. "A new approach to business fluctuations: heterogeneous interacting agents, scaling laws and financial fragility," Journal of Economic Behavior & Organization, Elsevier, vol. 56(4), pages 489-512, April.
    3. Hernan Mondani & Petter Holme & Fredrik Liljeros, 2014. "Fat-Tailed Fluctuations in the Size of Organizations: The Role of Social Influence," PLOS ONE, Public Library of Science, vol. 9(7), pages 1-9, July.
    4. Xie, Wen-Jie & Gu, Gao-Feng & Zhou, Wei-Xing, 2010. "On the growth of primary industry and population of China’s counties," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(18), pages 3876-3882.
    5. Thomas Brenner & Matthias Duschl, 2018. "Modeling Firm and Market Dynamics: A Flexible Model Reproducing Existing Stylized Facts on Firm Growth," Computational Economics, Springer;Society for Computational Economics, vol. 52(3), pages 745-772, October.
    6. Stanley, H.E. & Gabaix, Xavier & Gopikrishnan, Parameswaran & Plerou, Vasiliki, 2007. "Economic fluctuations and statistical physics: Quantifying extremely rare and less rare events in finance," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 382(1), pages 286-301.
    7. Carolina Castaldi & Giovanni Dosi, 2007. "The patterns of output growth of firms and countries: new evidence on scale invariances and scale specificities," LEM Papers Series 2007/14, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
    8. Xavier Gabaix, 2011. "The Granular Origins of Aggregate Fluctuations," Econometrica, Econometric Society, vol. 79(3), pages 733-772, May.
    9. Dongfeng Fu & Fabio Pammolli & S. V. Buldyrev & Massimo Riccaboni & Kaushik Matia & Kazuko Yamasaki & H. E. Stanley, 2005. "The Growth of Business Firms: Theoretical Framework and Empirical Evidence," Papers physics/0512005, arXiv.org.
    10. Fabio Pammolli & Dongfeng Fu & S. V. Buldyrev & Massimo Riccaboni & Kaushik Matia & Kazuko Yamasaki & H. E. Stanley, 2006. "A Generalized Preferential Attachment Model for Business Firms Growth Rates: I. Empirical Evidence," Papers physics/0609011, arXiv.org.
    11. Lux, Thomas, 2008. "Applications of statistical physics in finance and economics," Kiel Working Papers 1425, Kiel Institute for the World Economy (IfW Kiel).
    12. Stanley, H. Eugene & Plerou, Vasiliki & Gabaix, Xavier, 2008. "A statistical physics view of financial fluctuations: Evidence for scaling and universality," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(15), pages 3967-3981.
    13. Troy Tassier, 2013. "Handbook of Research on Complexity, by J. Barkley Rosser, Jr. and Edward Elgar," Eastern Economic Journal, Palgrave Macmillan;Eastern Economic Association, vol. 39(1), pages 132-133.
    14. Hongduo Cao & Ying Li & Yong Tan, 2014. "The synchronization club: classification of global economic groups by inequality," Applied Economics, Taylor & Francis Journals, vol. 46(21), pages 2502-2510, July.
    15. Thomas Brenner & Matthias Duschl, 2014. "Modelling Firm and Market Dynamics - A Flexible Model Reproducing Existing Stylized Facts," Working Papers on Innovation and Space 2014-07, Philipps University Marburg, Department of Geography.
    16. Carolina Castaldi & Giovanni Dosi, 2009. "The patterns of output growth of firms and countries: Scale invariances and scale specificities," Empirical Economics, Springer, vol. 37(3), pages 475-495, December.
    17. Thomas Lux, 2009. "Applications of Statistical Physics in Finance and Economics," Chapters, in: J. Barkley Rosser Jr. (ed.), Handbook of Research on Complexity, chapter 9, Edward Elgar Publishing.
    18. Anindya S. Chakrabarti, 2013. "Bimodality in the firm size distributions: a kinetic exchange model approach," Papers 1302.3818, arXiv.org, revised May 2013.
    19. Antonio Doria, Francisco, 2011. "J.B. Rosser Jr. , Handbook of Research on Complexity, Edward Elgar, Cheltenham, UK--Northampton, MA, USA (2009) 436 + viii pp., index, ISBN 978 1 84542 089 5 (cased)," Journal of Economic Behavior & Organization, Elsevier, vol. 78(1-2), pages 196-204, April.
    20. Massing, Till & Puente-Ajovín, Miguel & Ramos, Arturo, 2020. "On the parametric description of log-growth rates of cities’ sizes of four European countries and the USA," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 551(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:cond-mat/0401053. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.